US009271325B2

a2 United States Patent 10) Patent No.: US 9,271,325 B2

Backholm et al. 45) Date of Patent: Feb. 23, 2016
(54) DETECTION AND REPORTING OF USPC ..o 370/338, 229, 230, 252, 401
KEEPALIVE MESSAGES FOR See application file for complete search history.
OPTIMIZATION OF KEEPALIVE TRAFFIC .
IN A MOBILE NETWORK (56) References Cited
(71) Applicant: Seven Networks, Inc., San Carlos, CA U.S. PATENT DOCUMENTS
Us) 6.212,175 Bl 422001 Harsch
6,715,082 Bl 3/2004 Chang
(72) Inventors: Ari Backholm, Los Altos, CA (US); Continued
Michael Fleming, Redwood City, CA (Continued)

(US); Andrii Kokhanovskyi, Kiev

(UA); Sungwook Yoon, Palo Alto, CA FOREIGN PATENT DOCUMENTS

(Us) KR 20100085240 A 7/2010
(73) Assignee: Seven Networks, LL.C, San Carlos, CA OTHER PUBLICATIONS
Us) IPRP for Application No. PCT/US2014/036262 dated Sep. 24,2014.

(*) Notice: Subject to any disclaimer, the term of this (Continued)

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. Primary Examiner — Jamal Javaid
(74) Attorney, Agent, or Firm — NK Patent Law, PLLC

(21) Appl. No.: 14/266,759
(57) ABSTRACT

Detection of network transactions or keepalives for maintain-
ing long lived connections are disclosed. A keepalive detector

(22) Filed: Apr. 30, 2014

(65) Prior Publication Data can detect keepalive traffic based on keepalive parameters
US 2014/0321448 A1l Oct. 30, 2014 determined from an analysis of socket level network commu-
nication log data that record data transfer events including

Related U.S. Application Data data sent from mobile applications or clients on a mobile

o o device and data received by the mobile applications or clients

(60) Provisional application No. 61/817,718, filed on Apr. on the mobile device, timing characteristics, protocol types,
30, 2013, provisional application No. 61/823,340, etc. Various statistical analyses can be performed on the net-

filed on May 14, 2013, provisional application No. work communication data to detect keepalives, taking into
61/836,039, filed on Jun. 17, 2013. account variability in intervals of the data transfer events and

sizes of data sent and received on each event. The keepalive

(51) Int.CL detector can also detect keepalives from stream data on a

Ho4w 76/04 (2009.01) mobile device by analyzing socket level communication mes-
(52) US.CL sages including timing characteristics and amount of data
CPC v, HO04W 76/045 (2013.01) transferred to detect keepalives and report keepalives using a
(58) Field of Classification Search data structure.
CPC ... HO04W 76/045; GO6F 17/30011; GOGF
17/3089; G06Q 10/10; G0O6Q 30/02 25 Claims, 19 Drawing Sheets

Promotional E-Coupon | |Application Server/

Ad Semverts) | | Gantent Server(s)| | Servers) Service Provider
4208 4208 420C 410

I I ;i !
Network Interface 408
< [SMS IF | WiFi IF | [CedariF]

| server]
i Cache | 4

138 T

Host Server
400

—

Proxy Server
125

HTTP Access Proxy Controller 485 Trafiic Shaping
Engine 445 Activity/Behavior Engine 475
Content Metadata ——— Awareness Module 486 o
New Data ontrol Protocol
ey Modute 467 =

——— | Data Invalidator Mot] | | | 51178 Morule
™ Kespaive 68 fied

Detector

Device 405 . [l |

Repository

Connection and

414) Caching
— — Proprigtary! Policy Connection Manager 495
o Non-Standard | | Manager 455

Protocol

Radio Internet/\Wi- Heartbeat
Controller Fi Controtler Manager
496 4

P
Network Service Engine Keepalive
Provider S 470 Manager
Repostiory 490
418

US 9,271,325 B2
Page 2

(56)

8,799,410

8,838,744
2003/0157947
2005/0071674
2006/0190569
2007/0019610
2007/0140193
2008/0022336
2008/0039032
2010/0124211

References Cited

U.S. PATENT DOCUMENTS

B2
B2
Al
Al
Al
Al
Al
Al
Al*
Al*

8/2014
9/2014
8/2003
3/2005
8/2006
1/2007
6/2007
1/2008
2/2008
5/2010

Fiatal
Fiatal
Fiatal et al.
Chou

Neil
Backholm
Dosa et al.
Howcroft

Haumont
Payyappilly et al.

2011/0280134 Al 11/2011 Zheng

2013/0060815 Al* 3/2013 Saekicooevviviiivinnn 707/802
2014/0280892 Al* 9/2014 Reynolds HO4L 43/028
709/224

OTHER PUBLICATIONS

USPTO non-final Office Action mailed Jun. 12, 2015 for U.S. Appl.
No. 14/468,282 and Notice of References Cited.

USPTO Final Office Action mailed Nov. 10, 2015 for U.S. Appl. No.
14/468,282 and Notice of References Cited.

....... 455/115.1

......... 370/338 * cited by examiner

US 9,271,325 B2

Sheet 1 of 19

Feb. 23, 2016

U.S. Patent

VI ‘DI

T 1 : s m e T DY L : R

R
Rty

AR B

S A
et
SRR

DG

RS SR OdeE : e Bh sy

Y001

US 9,271,325 B2

Sheet 2 0f 19

Feb. 23, 2016

U.S. Patent

qa1 ‘OId

(s)ioniag (s)ioniag
h IS Tve) (sMeniag py
uodnop-e |euonowold
ocﬁ\ mONP\ <ONT\
ayoen
JoAIBS
> 801
Gel
JIomiaN
681
ayoen
{2007
AOAISS
JSOH
90eliaju|
BELe]

¥0L
A"

001

i9a1ag uoneoljddy
0Ll \.

Sa0IAIRS
JSUJ0 ‘SHIOMIBU |BI00S

jouesul ‘sjelod

Buibessop
19Uj10 ‘SN ‘SIS

JIeWT |BUOSISd
[few3 ajesodio)

suodno) o003

JUSILOD [BUONOWIOId
UBWISSILIBAPY

I9pinoid JUsjuo)

U.S. Patent Feb. 23, 2016

Sheet 3 0f 19

App Server/
Content Provider

f 110

US

9,271,325 B2

Ad Server(s)

I120A

I 120B

Promotional
Content
Network Server(s)
108
199 I1ZOC
(———— i C___
i : e-Coupon
! Optional Caching ! Server(s)
: Proxy Server :
I !
il M Host Server

Proxy Server
125

Server Cache
135

I’iOO

Network
106

Local
Proxy
175

Short Message
Service Center

162

FIG.

1C

US 9,271,325 B2

Sheet 4 of 19

Feb. 23, 2016

U.S. Patent

Vil .\

.

sonhjeuy

abesn pue Busoday

S/

N

T4 \u

ar ‘Bid

OSINS

29l

oiyes] peziwydo

oyes | peziwuydO-uoN

Axoid apis-jusiiQ

661 Axo14 Buyoen
/d3d Aued payg

{ HIOMISN

ZLL $S800Y olpey

Y

0G1

0iAa(IO

H SLT

U.S. Patent Feb. 23,2016 Sheet 5 of 19 US 9,271,325 B2

4 Radio/Battery App App App App\
Mobil information 1 2 3 n
05 8. 161 163} |163] |163] |163
< r'y A 'y 'y A
Apps
165 h 4 y Y Y Y
o oS
- 162
X A A y A
/_
h 4 y v ¥ A d
|~ Device State | _ |
;1= Monitor 121 | |
' ' Traffic Recognizer
| b : 122
Pl Keepalive |
: : Detector 305 :
D X |
1ol '
i v :
: : Keepalive I
{ | {Optimizer 300| |
[A :
, il
Client- Pl v : A
Side < b1} Local Data | | Protocol Optimizer 123
Proxy L Cache |[«+>»
175 b 185 | | | HTTP | [HTTPS| | Other
P 5 |
1l '
1o v : A4
i ;
bl Policy | | Traffic Scheduler
i v4 Manager <> 124 >
l 129 ! =
: y'y | T TolFrom
! v v ¢ Push Server-
!] Client > Side
s Reporting Agent 126 > 128 Proxy
125
Watch Dog 127 »
N

FIG. IE

US 9,271,325 B2

Sheet 6 of 19

Feb. 23, 2016

U.S. Patent

[PPE
Axoid
Aed payl
woi4/o 4

Al DIA

wolsAg sondjeuy abesn x Buiodey 0]

aseqele(JoAIDg
wswabeuepy Aojod

BETNEIN
uswebeueiy Aolod

.

A

|
|
|
|
!
|

<>

Jonseg buljjod

~

1514

obei0)g BlR(

JozZIUoULIEH

oes]
\X

1447

s
<

[
|
|
|
|
i
[
|
|
|
|
i

Y

Y

Jenieg Aejay

A
|
!
BV VTS
UonedHnoN
il -
L1
Axoid
asegele <«—» 9pIg
msn ~JusiD
wol4/01

~

445

Sl

US 9,271,325 B2

Sheet 7 of 19

Feb. 23, 2016

U.S. Patent

* I

]

Ve DI
00t —
1eziwndQ aaljedoay 0L
502 o _ auibug voyrdepy
weIshs 90¢ A senyes | | 41 Em | | 30 siws L 1000104 pIEpUEIS
Buneiado IV IXOICD G0t -uoNjAieleudold
’ 80Z @orpaU] MIomeN 1039819(] oAljedaay

CTZ @InpoiN Aialoy 19S8N

9z 992
JeBeuey |RaqIRE} Jajjonuon opey

1574
suibug uoeziuoud

BEe Jojetousn 72
9|jjoid uoneoyddy

1oj0019Q] UIeRd

GOz Jebeurpy uoosUUOD

g8z 1010919 J0iaryag uoiesyddy

[=35F4
Jebeueyy uonoesues | Asanhay

152 952
ainpopy Buyoreg sinpoly Juswubipy

GG¢ suibug Buideys ojest

G2z IdV Axoid

ave
3INPO [020}04d uoned)ddy

Sz 1ebeuepy Adjod Buoen

\l\

GLc

Ax0id 18207 (1144

uoneoyddy
SJIQOIA S1emy-Ax0id

ore
uoyeoyddy

a|Iqopy sremeu-Axoid

G52
syoeD

\.k

0GZ 8oAs(2IIqoN

US 9,271,325 B2

Sheet 8 of 19

Feb. 23, 2016

U.S. Patent

qac¢ ‘OIA

oysel] ouel]
aouRUBIUIBI aAnoRISIU|

PIve tozuobaien oiyel] uogeoyddy

arve
asuibug
uofjoslag
Ajeonuo sy

punoibyoeg punoiboio

51z +ozuobsien aielg uonedddy

2874
auibug
uonezijiold

[I¥%4
Jop8ieq ybipoeg

9¢7 101098187 Joinryag uonesyddy

o6i¢ aslc BCT
Jebeuep auibug o508
uonepadxy uonoIpald ARy 1980
Jssn AUAROY Jasn o

GIZ SINpon AlAnoy Jesn

US 9,271,325 B2

Sheet 9 of 19

Feb. 23, 2016

U.S. Patent

574
ayoed {8007

¢ DI

78z oInpoy Buipoosag
/BUIposug |020301d

28¢ Jobeuew (suoisses
10 sadA} Jaylo Jo ‘UoIssas

g/¢ ouibus
uoneziewlou pue Suiyoew Aleurg

do1 e “69) uoissag

087 Jojereush
weass ajig uonedyddy

9iZ
swiBuo uonosap uisyed uolorsSURI |

Vi JozhAeuy 10003014

ZZe euibus uogosalep uopoesuel |

07z euibuz uoneidepy |020j014 plepuels-uon/Aelendold

US 9,271,325 B2

Sheet 10 of 19

Feb. 23, 2016

U.S. Patent

£ 'OIA

§EE Jouodoy
aAjledooy)

0g¢

sinpopy Buiddey
199{qO uoyPBULOD

o143
lojepdnyoiesl)
199[qO UONOBLULCD

0z¢ JozA|euy UOOBUUOD

81¢

JO}09)ep 8zis |lhg |

anljedeay Jeinboy

gie
J0J0B]9P [EAISUI
anljedoay Jeinbay

1€ J8zhjeuy ey HoT yiomaN

0t 1010918 anjedosy

jusisisiad

ot

84080 |00

US 9,271,325 B2

Sheet 11 of 19

Feb. 23, 2016

44

OIAd

U.S. Patent

oy
06% Atopisodey
s . . JobBeuepy)X I9PINOId
1eBeUEpy sejonuo) 14| | 1sionu00 anjjedoa)y subug 90IAIDS WIOMIBN]
jJeaquesH | | -iM/1euR| opey _ ucpeldepy
— 1000304d
S6v sobeuByy UONDBULO §ob Ie0eueiy PIEPUEIS-UON
Sov W uog 0 Aolj0d /Aejendoiy \\\}!nl/
Buwpoen %
Alonsoday
| _ T UCJRULIO] 9218 (]
10319818 \\\\j
77 89y oAledoD) S~
oinpoyy Buoreg a|npoy Jojepiieay) eleq
i 19% eInpon - T T
9Lv ssauaemy Ajokid I¥¥ 1030818 cly
|000304d [043UOD) Bleq MaN Asopsoday
GOF o|npoy ssauaiemy BIEPEIO JUSIUCD
ST euibug Jojneyag/Aanoy SFF auibug PUE UOYOBUUCD
Buideys oyjeil 6T J9lj0u00 AxXoid $$800Y d1iH T
Gzl
1on18g Axoid
| ansemieg || 11 141 _ 4/ SWS |
80y ooelOIU] YIOMIEN
T
oot
JaAIBG 1SOH —
Oivy 00ey g80cy YOTH
JBPIACI B0IABS (s)ienieg (s)snseg Jusuon (s)1on13
Jionieg uogesyddy uodnon-3 |BUOIOWOId SPY

US 9,271,325 B2

Sheet 12 of 19

Feb. 23, 2016

U.S. Patent

qay "Old

6P aInpojy siejsweled aaljedesy]

1552
Joyeiep azis aiig
anledoasy Jenbay

[4%%
1010819p |BAIRUl
anledaay Jenboay

Oy J0zAlRUY B1RQ DO YomioN

GOV J010818(] onljedasy

US 9,271,325 B2

Sheet 13 of 19

Feb. 23, 2016

U.S. Patent

98y
so|youd

uonesddy

IV "OIA

787 sinpop buipodaq

/Buiposug [090101d

Z8y iobeuew (suoisses

viv euibue
uofiezijeuliou pue Buyoiew Aeuig

10 sodA} Joylo 10 ‘uoissas
d0l e b9) uoisseg

08y Joieseusb
weals ajAq uonedyddy

[¥k7%
aubBua uoposiep wened uogoesues |

Ziv JezAjeuy [000101d

[7% euibus uonosiep uonoesuRl |

0/% suibug uopeidepy (0001014 piepuelg-uopn/Aielsudoid

U.S. Patent Feb. 23,2016 Sheet 14 of 19 US 9,271,325 B2

505

Examine socket level network 500

communication log data
associated with an application

510

Perform statistical analysis
to determine a regular
interval for a pattern of
data sent and received

515

Perform statistical analysis
to determine regular byte
sizes for the pattern of data
sent and received

520

Store the regular byte sizes
and intervals in association
with the application

FIG. 5

U.S. Patent Feb. 23,2016 Sheet 15 of 19 US 9,271,325 B2

605

Examine a pattern of data sent
and received
600

AN

, ~Does the pattern N
occur more than x =~
. number of times ina

. given duration?

e g

Yés

v
. 615

- 630
e S

\
/\ ’tshg‘f);rt\tfrrr\:ﬂr::frg fnfgr /—Noﬂﬁ» No regular interval detected

ya 620 No
/Is the median
interval time for th\
< pattern greater than } ------------------------
g threshold amo /L
\ of ime?

v 625:

Detect a regular interval for the
pattern i

FIG. 6

U.S. Patent Feb. 23,2016 Sheet 16 of 19 US 9,271,325 B2

705

Examine a pattern of data sent
and received 700

T 710

- S

Do same sized T
Yes </ data sentand received >
“~._occur regularly? -

e
.
~ e

715 720

_~"Bo same sized data se;ﬁ\x\ Detect regular byte sizes for
< oY esp
~._ occurregularly? - the pattern

765 e L

Detect regular byte sizes for

A the pattern N;O
) //,Y\ N 795 730
_________________________ " Do same sized data "~ YeS ,| Detect regular byte sizes for

“~rgceived occur regularly/’,)// the pattern
735

Apply clustering algorithm to

cluster similar sized data sent i v Yos

and received N 740
e S

e) ~
s the variance \
_-of the cluster of data sent.

Yes "~ and received less thana >
“_ threshold and occur .~
o T4 regulary? 7 N 755
,,// \‘\ \\\ /’/ /"/ \‘\\
~ AN . e e . N
~ . ~ e - Is the variance "~
7 Isthevariance e S
p N i " ofthe cluster of data ™
7 of the cluster of data sent ™ / P ; -
—< ~<«No < received less than a o
- less than a threshold and - N o
S P ~ threshold and occur -
- occur regularly? - “ o -
“ P regularly?
Yes . o N No
“ L N e
v o
v . 150 No v 760

Detep t regular byte. No regular byte sizes for the
sizes for the

pattern FIG. 7 pattern detected

U.S. Patent Feb. 23, 2016

805

Monitor data sent from and/or
received by an application

810

The data sent
and/or received have a

Sheet 17 of 19

regular interval and have
egular byte sizes?

Yes

The data sent
and/or received over the

same TCP session and
proxy streamed?

Yes
v 820

Detect the data sent/or
received as keepalive traffic

FIG. 8

US 9,271,325 B2

800

825

No keepalive traffic detected

U.S. Patent

900

Feb. 23, 2016

Sheet 18 of 19

Monitor TDR messages 905

L!A

k&

€——NO

«—No

r!‘

Detect 2 TDR message
including a connection ID 910

Search for a connection object
in a connections map that
matches the connection 1D 915

No
Matching connection

object found? 920

Create a new connection
object with information from the
TDR message and initialize the

keepalive weight to 1 925

Amount of data
sent and received
< a threshold?

Insert the connection object to
the connections map using the
connection ID 930

935

Time since last
data transfer > a
threshold? 940

Is the keepalive
weight > threshold?
950

Yes

!

US 9,271,325 B2

FIG. 9

Yeves No
Confirm detection
Update the connection object of a keepalive 955
by incrementing the keepalive
weight by 1 945 l
Update the
connection object
by updating the
l keepalive detected
flag 960

Report changes

connection object 965

in the

U.S. Patent Feb. 23,2016 Sheet 19 of 19 US 9,271,325 B2

1000

Processor
Video Display
Instructions
Alpha-numeric Input Device
Main Memory
Cursor Control Device
Bus
Instructions
Drive Unit

Machine-readable
(Storage) Medium

Non-volatile Memory

Instructions
Network Interface Device

Signal Generation Device

FIG. 10

US 9,271,325 B2

1

DETECTION AND REPORTING OF
KEEPALIVE MESSAGES FOR
OPTIMIZATION OF KEEPALIVE TRAFFIC
IN A MOBILE NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to and benefit from
U.S. Provisional Patent Application Ser. No. 61,817,718
titled “OPTIMIZATION OF NON-USER INTERACTIVE
TRAFFIC IN A MOBILE NETWORK BY KEEP ALIVE
IDENTIFICATION AND DELAY TOLERANCE OF KEEP
ALIVE MESSAGES AND OTHER NON-USER INTER-
ACTIVE TRAFFIC” filed on Apr. 30, 2013; U.S. Provisional
Patent Application Ser. No. 61/823,340 titled “IDENTIFI-
CATION AND REPORTING OF KEEP-ALIVE MES-
SAGES AND OTHER NON-USER INTERACTIVE TRAF-
FIC IN A MOBILE NETWORK?” filed on May 14, 2013; and
U.S. Provisional Patent Application Ser. No. 61/836,039
titled “IDENTIFICATION AND REPORTING OF KEEP-
ALIVE MESSAGES AND OTHER NON-USER INTER-
ACTIVE TRAFFIC IN A MOBILE NETWORK?” filed on
Jun. 17,2013. The entire content of the aforementioned appli-
cations are expressly incorporated by reference herein.

BACKGROUND

When a connection is established between a client and a
server, the two entities dedicate a portion of their resources to
the connection. Typically, after a data transfer session is com-
pleted, the connection between the client and the server is
terminated by the client or the server by sending an IP packet
(e.g., FIN packet). However, sometimes the client and the
server can maintain the connection by using keepalive mes-
sages or heartbeat messages. A keepalive message can be sent
an entity at one end of a connection to check the operational
status of another entity at the other end of the connection.
When the receiving entity receives a keepalive message from
a sending entity, the receiving entity immediately replies with
an acknowledgment message, thereby informing the sending
entity that it is alive or operational. If, however, the sending
entity does not receive an acknowledgement message for a
period of time, the sending entity can terminate the connec-
tion.

The keepalive messages from these always-on applications
allow the applications to receive messages with less delay.
However, this improvement in latency has associated costs.
These costs include consumption of a significant amount of
energy in mobile devices, additional signaling in the mobile
network and bandwidth consumption. For example, to be able
to send keepalive messages frequently, a mobile device needs
to frequently transition its radio between a high powered state
and an idle state or remain in a high powered state instead of
the idle state for a longer period of time, resulting in fast
draining of battery. These radio transitions also cause addi-
tional signaling in the networks as radio resource control
(RRC) messages need to be exchanged between the mobile
device and base station to establish a radio link. Furthermore,
each keepalive message can be as large as 20-60 bytes in size,
and a large number of such keepalive messages from multiple
application can add up to consume a substantial chunk of the
network bandwidth. Thus keepalive optimization is desired.
However, keepalive optimization can occur only when kee-
palives can be accurately detected.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A depicts an example of data sent or received by
mobile applications on a mobile device using utilizing vari-

20

25

40

65

2

ous proprietary, non-proprietary and/or encrypting protocols
read from a Transport Control Protocol (TCP) stream for
detecting and optimizing keepalive traffic in a mobile net-
work.

FIG. 1B depicts an example diagram of a system where a
host server facilitates management of traffic, content caching,
and/or resource conservation between mobile devices (e.g.,
wireless devices), an application server or content provider,
or other servers such as an ad server, promotional content
server, or an e-coupon server in a wireless network (or broad-
band network) for resource conservation. The host server can
further determine parameters that can be used in identifying
keepalives from a TCP stream for optimizing keepalive traffic
in a mobile network.

FIG. 1C depicts an example diagram of a proxy and cache
system distributed between the host server and device which
facilitates network traffic management between a device, an
application server or content provider, or other servers such as
an ad server, promotional content server, or an e-coupon
server for resource conservation and content caching. The
proxy system distributed among the host server and the
device can further identify keepalives from a TCP stream on
the mobile device for optimizing keepalive traffic in a mobile
network.

FIG. 1D depicts an example diagram of the logical archi-
tecture of a distributed proxy and cache system.

FIG. 1E depicts an example diagram showing the architec-
ture of client side components in a distributed proxy and
cache system.

FIG. 1F depicts a diagram of the example components on
the server side of the distributed proxy and cache system.

FIG. 2A depicts a block diagram illustrating another
example of client-side components in a distributed proxy and
cache system, further including a keepalive detector that can
identify keepalives from a TCP stream.

FIG. 2B depicts a block diagram illustrating additional
components in the local proxy shown in the example of FIG.
2A.

FIG. 2C depicts a block diagram illustrating additional
components in the proprietary/non-standard protocol adapta-
tion engine shown in the example of FIG. 2A.

FIG. 3 depicts a block diagram illustrating additional com-
ponents in the keepalive detector shown in the example of
FIG. 2A.

FIG. 4A depicts a block diagram illustrating an example of
server-side components in a distributed proxy and cache sys-
tem, further including a keepalive detector that can identify
keepalives from a TCP stream and a proprietary/non-standard
protocol adaptation engine.

FIG. 4B depicts a block diagram illustrating additional
components in the keepalive detector shown in the example of
FIG. 4A.

FIG. 4C depicts a block diagram illustrating additional
components in the proprietary/non-standard protocol adapta-
tion engine shown in the example of FIG. 2A.

FIG. 5 depicts a logic flow diagram illustrating an example
method of analyzing socket level network communication log
data using statistical analyses to identify regular interval and
regular byte sizes corresponding of keepalives originating
from an application.

FIG. 6 depicts a logic flow diagram illustrating an example
method of performing a statistical analysis on a pattern of data
sent and received to determine a regular interval for the pat-
tern.

US 9,271,325 B2

3

FIG. 7 depicts a logic flow diagram illustrating an example
method of performing statistical analyses on a pattern of data
sent and received to determine regular byte sizes for the
pattern.

FIG. 8 depicts a logic flow diagram illustrating an example
method of monitoring a TCP stream of data sent and received
by the application and identifying keepalives from the TCP
stream when the same TCP stream includes regular byte sized
data sent and received at regular intervals.

FIG. 9 depicts a logic flow diagram illustrating an example
method of using timing characteristics and an amount of data
sent and received to identify whether a connection or TCP
stream contains a keepalive and reporting the detection of the
keepalive.

FIG. 10 depicts a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to per-
form any one or more of the methodologies discussed herein,
may be executed.

DETAILED DESCRIPTION

The following description and drawings are illustrative and
are not to be construed as limiting. Numerous specific details
are described to provide a thorough understanding of the
disclosure. However, in certain instances, well-known or con-
ventional details are not described in order to avoid obscuring
the description. References to one or an embodiment in the
present disclosure can be, but not necessarily are, references
to the same embodiment; and, such references mean at least
one of the embodiments.

Reference in this specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the disclosure. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment, nor are separate or alternative embodi-
ments mutually exclusive of other embodiments. Moreover,
various features are described which may be exhibited by
some embodiments and not by others. Similarly, various
requirements are described which may be requirements for
some embodiments but not other embodiments.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the disclo-
sure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are
discussed below, or elsewhere in the specification, to provide
additional guidance to the practitioner regarding the descrip-
tion of the disclosure. For convenience, certain terms may be
highlighted, for example using italics and/or quotation marks.
The use of highlighting has no influence on the scope and
meaning of a term; the scope and meaning of a term is the
same, in the same context, whether or not it is highlighted. It
will be appreciated that same thing can be said in more than
one way.

Consequently, alternative language and synonyms may be
used for any one or more of the terms discussed herein, nor is
any special significance to be placed upon whether or not a
term is elaborated or discussed herein. Synonyms for certain
terms are provided. A recital of one or more synonyms does
not exclude the use of other synonyms. The use of examples
anywhere in this specification including examples of any
terms discussed herein is illustrative only, and is not intended
to further limit the scope and meaning of the disclosure or of
any exemplified term. Likewise, the disclosure is not limited
to various embodiments given in this specification.

10

15

20

25

30

40

45

50

55

4

Without intent to limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may be
used in the examples for convenience of a reader, which in no
way should limit the scope of the disclosure. Unless other-
wise defined, all technical and scientific terms used herein
have the same meaning as commonly understood by one of
ordinary skill in the art to which this disclosure pertains. In
the case of conflict, the present document, including defini-
tions will control.

Embodiments of the present disclosure include technology
for detecting or identifying keepalive messages (‘“kee-
palives”) from Transport Control Protocol (TCP) streams in a
mobile network (hereinafter “keepalive detection technol-
ogy”).

Existing systems and methods can optimize mobile traffic
over standard and non-proprietary application level protocols
including, but not limited to: Hypertext Transfer Protocol
(HTTP), Hypertext Transfer Protocol Secure (HTTPS), File
Transfer Protocol (FTP), Simple Mail Transfer Protocol
(SMTP), Internet Message Access Protocol (IMAP), Post
Office Protocol (POP), and the like. However, many mobile
applications are moving away from the standard protocols
towards vendor specific proprietary protocols. For example,
Google utilizes a non-standard Transmission Control Proto-
col (TCP) port 5228. By way of another example, the “What-
sApp” mobile application uses a customized version of the
Extensible Messaging and Presence Protocol (XMPP). Simi-
larly, some applications such as Skype and Yahoo mail use
their own proprietary protocols, while others such as Urban
Airship’s push notifications protocol is used by various ven-
dors.

Typically, to perform any detection and optimization of
traffic such as keepalive traffic, non-interactive traffic or other
user interactive traffic, the protocols must be well understood.
For example, the header and other protocol specific data must
be known before any optimization can be performed. As
proprietary protocols are not standardized and not well under-
stood, mobile traffic over such proprietary protocols cannot
be optimized by existing optimization systems and methods.
The disclosed technology can identify keepalives from the
TCP streams regardless of the application level protocols
used by the applications from where the keepalives originate
and enable optimization of the keepalives. Thus, the disclosed
keepalive detection technology provides a protocol agnostic
technology for identifying keepalives for optimization. Opti-
mization of the keepalives in a wireless or mobile network
conserves the resources on mobile devices and/or the server
by reducing signaling, number of unnecessary radio transi-
tions (powering up or powering down) and battery drain. In
some embodiments, the keepalive detection technology can
identify traffic that includes keepalive and excludes payload
traffic or other higher safety scenarios to engage in keepalive
optimization.

In some embodiments, the keepalive detection technology
can be used to categorize mobile transactions as transactions
associated with (a) keepalives; (b) other non-interactive traf-
fic; and (c) interactive traffic to facilitate management and
conservation of traffic in mobile networks.

In some embodiments, the keepalive detection technology
utilizes Transport Control Protocol (TCP) streaming optimi-
zation along with a local proxy and/or a proxy server of a
distributed proxy system to identify transactions within a
TCP stream. The keepalive detection technology includes
categorization of those transactions to (a) keepalives; (b)
other non-interactive traffic; and (c) interactive traffic.

US 9,271,325 B2

5

In some embodiments, the keepalive detection technology
can identify network transactions (e.g., keepalives) based on
a combination of parameters, such as but not limited to:
periodicity or intervals, size thresholds, similar/repeating
content, content following a certain pattern (e.g., content
having an incrementing or decrementing portion or counter)
and/or based on knowledge of the actual application level
protocol. In some embodiments, non-interactive traffic and
interactive traffic can be distinguished from each other by
proxies of user activity, a status of the application performing
the data transfer (e.g., foreground, background, active, non-
active), status of output mechanisms, such as screen, audio,
notification LED, Bluetooth, NFC, RFID, touch sensor, any
other types of sensors, camera, etc., readings from the any
other sensors or detectors of the device, such as microphone,
accelerometer, biosensors, location sensors, motion sensors,
etc., or a combination thereof.

In some embodiments, some applications and servers send
small sized information back and forth in regular interval to
keep their TCP connection alive. These information can
recorded in a log. The keepalive detection technology can
detect or identify keepalives based on an analysis of socket
level network communication log data (“netlog”). FIG. 1A
depicts an example table 100A of data sent or received by
mobile applications on a mobile device using utilizing vari-
ous proprietary, non-proprietary and/or encrypting protocols
read from a Transport Control Protocol (TCP) stream and
recorded in a netlog for detecting and optimizing keepalive
traffic in a mobile network. The table 100A can include vari-
ous fields of information such as application names 180, the
data sent from the application to the network (e.g., sendbytes
or fromapp bytes 181), the data received by the application
from the network (e.g., recbytes or fromnet bytes 182), the
host names of the application servers associated with the
applications, the application-level protocol 183, port num-
bers, number of occurrences 184 (e.g., the number of times
that the same or similar sized bytes of data from sent and
received), the median interval 186 (e.g., median of the inter-
vals between each of the occurrences 184) and the mean
interval.

In many instances, there can be ambiguities in the recorded
netlog data that can prevent accurate detection of keepalives.
One example ambiguity is the keepalive interval (i.e., the time
period between two keepalives). The interval at which the
information is sent back and forth may not be regular all the
time. This may be due to the soft timer issue, usage of a
mobile device by a user, network delay, or the like. Particu-
larly a user’s use of the application can greatly alter the
keepalive activity, resulting in highly variable keepalive inter-
vals. Similarly, another ambiguity in detecting keepalives can
be the information size (byte size). The information size can
be irregular due to the design of the application or the server
or other reasons. For example, an application may send dif-
ferent sized information but within some bound, e.g., 40~50
bytes for every keepalive spot. The keepalive detection tech-
nology can detect and resolve any ambiguities in the recorded
netlog data in the process of detecting keepalives. The kee-
palive detection technology can do so by detecting a regular
interval and regular byte sizes of data sent back and forth
between the mobile device and the associated server. In the
table 100A, the sendbytes 181 and the recbytes 182 fields can
be the regular byte sizes for keepalives from applications. The
table 100A can also include a field for the regular interval
and/or results from any other intermediate calculations (e.g.,
standard deviation, quartiles, variance, etc.) performed in the
process of determining the regular interval and/or regular
byte sizes.

10

15

20

25

30

35

40

45

50

55

60

65

6

In some embodiments, the keepalive detection technology
can detect a pattern of data sent (i.e., data sent from an
application to a server or fromapp bytes or sendbytes) and
data received (i.e., data received by the application from the
server or fromnet bytes or recbytes) as a regular pattern if, for
example, one or more of the following conditions are true.
1. The pattern occurs more than $X times per $D duration.
The $ sign is used herein to indicate that the frequency param-
eter “X” and the duration parameter “D” are tunable. In one
example implementation, a pattern of fromapp bytes and
fromnet bytes occurring 10-15 times per day can be consid-
ered a regular pattern.

2. The interval time is uniform. The interval is uniform if 1%
quartile and 3" quartile’s difference is smaller than $Y % of
median interval. In one embodiment, 10-15% can be used for
$Y %. Alternatively, in some implementations, without look-
ing at 1% or 3’7 quartiles, a pattern can be declared as uniform
if it contains a sequence of $K keepalives (e.g., fromapp and
fromnet bytes, fromapp bytes or fromnet bytes) whose inter-
vals’ variance is smaller than $V. In one example implemen-
tation, $K=3 and $V=0.1 can be used. The $ sign is used
herein to indicate that the frequency parameter “Y,” “K* and
“V” are tunable.

3. The median interval time is bigger than $Z seconds. In one
example implementation, 60 seconds can be used for $Z. The
$ sign is used herein to indicate that the median interval time
“Z” is tunable.

The parameters described above can generally be made
tighter or looser (i.e., higher or lower) to adjust the aggres-
siveness in which the pattern is to be identified as a pattern
having a regular interval. In some embodiments, all three of
the conditions described above may need to be satisfied in
order to determine whether a pattern has a regular interval or
an irregular interval.

In some embodiments, the keepalive detection technology
can detect regular byte size pattern of an application, by using
the following methodology.

1. Check fromapp/fromnet bytes. If same fromapp/fromnet
bytes occur in regular interval (e.g., as defined above), then
the keepalive detection technology detects a keepalive.

2. If 1 fails, the keepalive detection technology can find the
pattern from the same fromapp bytes. If the pattern occurs in
a regular interval, then the keepalive detection technology
detects a keepalive.

3. If 2 fails, the keepalive detection technology can find the
pattern just from the same fromnet bytes. If the patterns
occurs in a regular interval, then the keepalive detection tech-
nology detects a keepalive.

4. If' 3 fails, the keepalive detection technology can approxi-
mately cluster fromapp/fromnet bytes. With a clustering algo-
rithm (e.g., K-means), the keepalive detection technology can
identify similar sized fromapp/fromnet bytes patterns. If the
sizes in the cluster are similar (e.g., small variance $V2,
another tunable parameter), and if they occur in a regular
interval then the keepalive detection technology detects a
keepalive. In some embodiments, the clustering technique in
statistical programming languages (e.g., R for Statistical
Computing) can be used. Alternatively, a bucketing method
can be employed to bucket the fromapp/fromnet bytes.

5. If 4 fails, keepalive detection technology can apply a clus-
tering algorithm only to fromapp bytes. If the biggest clus-
ter’s variance is smaller than $V2 and the fromapp bytes
occur in a regular interval, then the keepalive detection tech-
nology detects a keepalive.

6. If 5 fails, the keepalive detection technology can apply a
clustering algorithm only to fromnet bytes. If the biggest

US 9,271,325 B2

7

cluster’s variance is smaller than $V2 and they occur in a
regular interval, then the keepalive detection technology
detects a keepalive.

The keepalive detection technology can then confirm suc-
cessful detection of a keepalive if (1) some of the keepalive
entries share the same TCP session or connection (e.g., based
on the TCP session identifier) and if (2) the keepalives are
proxy streamed. The determination of regular interval and
regular byte sizes of keepalives for detecting the keepalives
are described in detail with respect to the network log data
analyzer component of a keepalive detector in FIGS. 3 and 4B
and logic flow diagrams of FIGS. 5-8.

In some embodiments, the keepalive detection technology
can analyze information in a traffic data report (TDR) in
detecting keepalives. A TDR or TDR message can be used to
report traffic data immediately after their completion (e.g.,
handshakes). The detection of a keepalive can include exam-
ining a TDR message including stream data (or data from a
TCP stream) for socket time created and an amount of data
transferred. For example, based on the socket time created,
the keepalive detection technology can determine if the time
of creation of the socket was much before the current time
(e., T, ..<<T,,.). Similarly, based on the amount of data
transferred, the keepalive detection technology can determine
if some stream data transferred is less than a threshold (e.g.,
MAX_KEEP_ALIVE_JACKET). Based on these determina-
tions, the keepalive detection technology can detect whether
the TDR message including the stream data includes a kee-
palive. Once a stream has been identified to contain kee-
palives, any traffic on that stream can be categorized as kee-
palives in some embodiments.

In some embodiments, the accuracy in detecting kee-
palives by analyzing TDR messages can be improved based
onan analysis of frequency of data transferred. The frequency
of data transferred can be determined based on event history
from the TDR messages by, for example, analyzing interval
for keepalives.

The keepalive detection technology includes a data struc-
ture for storing information about a connection object that is
possibly a keepalive and any other data needed from the TDR
messages. The data structure can also comprise a container
(e.g., a class or data structure) for storing the connection
object. The container can be based on recurring requests (RR)
(i.e., based on identifying similar requests from an applica-
tion for polling, caching, etc.) and can be mapped to a con-
nection ID. The keepalive detection technology can, in some
embodiments, report keepalive via an analysis field.

In some embodiments, the keepalive detection technology
can implement keepalive detection by creating a connections
container. On TDR execution (for keepalives, handling
TDR_TYPE_STREAM_DATA), the keepalive detection
technology determines a connection ID which is a unique
value associated with the TDR message including stream
data. The keepalive detection technology then searches for an
appropriate connection in a connections map using the con-
nection ID. In the event that a connection object with a match-
ing connection ID is found, the keepalive detection technol-
ogy updates the connection object and analytics (e.g., timing
calculations, amount of small data transfers). In some
embodiments, when a connection object with a matching
connection ID cannot be found, the keepalive detection tech-
nology creates a connection object with information from the
TDR message and inserts the connection object into the con-
nections map with the connection ID. Any changes associated
with the connection object is then reported in the analysis
field of a log (e.g., a client reporting and capture service or
CRCS log). On execution of a connection tear down (CTD)

10

15

20

25

30

35

40

45

50

55

60

65

8

event or connection termination event (i.e., an event when a
TCP connection is terminated by the application or the
server), the keepalive detection technology searches for an
appropriate connection in the connections map using the con-
nection ID. In case a connection object with a matching
connection ID is found, the connection object is removed
from the connection map and deleted.

As described above, the keepalive detection technology
can implement a detection logic that in response to detecting
aTDR message with type TDR_TYPE_STREAM_DATA for
a socket that was created more than, for example, a minimum
interval ago (e.g., SC_MIN_TCPCONNECTION_CRE-
ATION_INTERVAL seconds ago, e.g., default 300 seconds),
creates a connection object. This connection object is a poten-
tial keepalive connection. For such a connection object, the
detection logic can create a weight variable (e.g., a “keepalive
weight”) which can be initialized on connection object cre-
ation with value=1. Analyzing each TDR message, the kee-
palive weight can be increased by 1, for example, if the
amount of data transferred from a local proxy on a mobile
device to a proxy server (e.g., on a host server) and from the
server to the mobile device is less than, for example,
SC_MAX_BYTES_AMOUNT bytes (e.g., default 100
bytes) and time since last data transfer is more than, for
example, SC_MIN_IT seconds (e.g., default 300 seconds).
When the keepalive weight is more than a threshold (e.g.,
SC_KEEPALIVE_WEIGHT, with a default value of e.g., 3),
the keepalive detection technology can assume that a kee-
palive has been detected.

The keepalive analysis and detection, including each
change in the connection object can be reported, for example,
in an analysis field. An example data structure for reporting
keepalives have the form of:

KA[KAI/KA2/KA3/KA4]

KA1 is a unique ID for connection or connection 1D, KA2
is a connection creation time, KA3 is a flag indicating
whether the connection is already detected as a keepalive and
can bea Boolean value (0/1) and KA4 is the keepalive weight.

Once a TCP stream has been identified to contain kee-
palives, any traffic on that stream can be categorized as kee-
palives. This is because the KA3 flag value reflects whether
the connection has been identified as containing keepalives.
In some embodiments, the KA3 flag does not tell whether the
reported packet in the TCP stream is believed to be a kee-
palive. In some embodiments, the keepalive detection tech-
nology includes an additional flag KAS which can be used to
indicate whether the packet contained in the TCP stream is a
keepalive or not. Thus, in some embodiments, the data struc-
ture for reporting keepalives can be of the following example
form:

KA[KAI/KA2/KA3/KA4/KAS]

KA1 is a unique ID for the connection, KA2 is the connec-
tion creation time, KA3 is an indication whether the connec-
tion is already detected as keepalive and can be a value of O or
1, KA4 is the keepalive weight and KAS is an indication
whether the current packet is a keepalive and can have a value
of'0 or 1. An example of a portion of a netlog report including
the data structure for reporting keepalives is provided below:

2013-04-30 12:49:58.571 netlog 10 240 929224000
rptuse20120814.getjar.com com.accuweather.android

background proxy__stream KA[138806279670/1367326198/0/1/0] 1 1227
2013-04-30 12:56:59.916 netlog 10 0 2 2 0 0 0 rptuse20120814.getjar.com
com.accuweather.android

background proxy__stream KA[138806279670/1367326198/0/2/1] 1 1227
2013-04-30 13:00:05.295 netlog 10 0 44 0 0 0 rptuse20120814.getjar.com

US 9,271,325 B2

9

-continued

com.accuweather.android
background proxy_ stream KA[138806279670/1367326198/1/3/1] 1 1227
2013-04-30 13:06:11.904 netlog 10 0 44 0 0 0 rptuse20120814.getjar.com
com.accuweather.android
background proxy_ stream KA[138806279670/1367326198/1/4/11 1 1227
2013-04-30 13:12:21.157 netlog 10 0 2 2 0 0 0 rptuse20120814.getjar.com
com.accuweather.android
background proxy_ stream KA[138806279670/1367326198/1/5/11 1 1227
2013-04-30 13:15:25.986 netlog 10 0 44 0 0 0 rptuse20120814.getjar.com
com.accuweather.android
background proxy_ stream KA[138806279670/1367326198/1/6/1] 1 1227
2013-04-30 13:21:34.643 netlog 10 0 44 0 0 0 rptuse20120814.getjar.com
com.accuweather.android
background proxy_ stream KA[138806279670/1367326198/1/7/11 1 1227

As shown above, the first netlog record shows that KAS
flag to be 0 indicating that the proxy stream data did not carry
the keepalive. Each successive netlog record shows that the
KA4 is incremented by 1 and when the KA4 flag reaches an
example default weight of 3, the KA3 flag is flipped from O to
1 indicating detection of a keepalive. The keepalive detection
based on analysis of TDR messages are described in detail
with respect to the connection analyzer of the keepalive
detector 305 in FIG. 3 and FIG. 9.

FIG. 1B depicts an example diagram of a system where a
host server facilitates management of traffic, content caching,
and/or resource conservation between mobile devices (e.g.,
wireless devices), an application server or content provider,
or other servers such as an ad server, promotional content
server, an e-coupon server or a messaging server (e.g., Google
Cloud Messaging (GCM) server, the Exchange ActiveSync
(EAS) server) in a wireless network (or broadband network)
for resource conservation. The host server can further deter-
mine parameters that can be used in identifying keepalives
from a TCP stream for optimizing keepalive traffic in a
mobile network.

The client devices 150 can be any system and/or device,
and/or any combination of devices/systems that is able to
establish a connection, including wired, wireless, cellular
connections with another device, a base station/cell provider
112, a server and/or other systems such as host server 100
and/or application server/content provider 110. Client
devices 150 will typically include a display and/or other
output functionalities to present information and data
exchanged between among the devices 150 and/or the host
server 100 and/or application server/content provider 110.
The application server/content provider 110 can be any server
including third party servers or service/content providers fur-
ther including advertisement, promotional content, publica-
tion, or electronic coupon servers or services. Similarly, sepa-
rate advertisement servers 120a, promotional content servers
1204, and/or e-Coupon servers 120c as application servers or
content providers are illustrated by way of example.

For example, the client/mobile devices 150 can include
mobile, handheld or portable devices, wireless devices, or
non-portable devices and can be any of, but not limited to, a
server desktop, a desktop computer, a computer cluster, or
portable devices, including a notebook, a laptop computer, a
handheld computer, a palmtop computer, a mobile phone, a
cell phone, a smart phone, a PDA, a Blackberry device, a
Palm device, any tablet, a phablet (a class of smart phones
with larger screen sizes between a typical smart phone and a
tablet), a handheld tablet (e.g., an iPad, the Galaxy series, the
Nexus, the Kindles, Kindle Fires, any Android-based tablets,
Windows-based tablets, or any other tablet), any portable
readers/reading devices, a hand held console, a hand held
gaming device or console, a head mounted device, a head

10

15

20

25

30

35

40

45

50

55

60

65

10

mounted display, a thin client or any SuperPhone such as the
iPhone, and/or any other portable, mobile, hand held devices,
or fixed wireless interface such as a M2M device, etc. In one
embodiment, the client devices 150 (or mobile devices 150),
host server 100, and application server 110 are coupled via a
network 106 and/or a network 108. In some embodiments, the
devices 150 and host server 100 may be directly connected to
one another.

The input mechanism on client devices 150 can include
touch screen keypad (including single touch, multi-touch,
gesture sensing in 2D or 3D, etc.), a physical keypad, a
mouse, a pointer, a track pad, a stylus, a stylus detector/
sensor/receptor, motion detector/sensor (e.g., including
1-axis, 2-axis, 3-axis accelerometer, etc.), a face detector/
recognizer, a retinal detector/scanner, a light sensor, capaci-
tance sensor, resistance sensor, temperature sensor, proximity
sensor, a piezoelectric device, device orientation detector
(e.g., electronic compass, tilt sensor, rotation sensor, gyro-
scope, accelerometer), or any combination of the above.

Signals received or detected indicating user activity at cli-
ent devices 150 through one or more of the above input
mechanisms, or others, can be used in the disclosed technol-
ogy in acquiring context awareness at the client device 150.
Context awareness at client devices 150 generally includes,
by way of example but not limitation, client device 150 opera-
tion or state acknowledgement, management, user activity/
behavior/interaction awareness, detection, sensing, tracking,
trending, and/or application (e.g., mobile applications) type,
behavior, activity, operating state, etc.

Context awareness in the present disclosure also includes
knowledge and detection of network side contextual data and
can include network information such as network capacity,
bandwidth, traffic, type of network/connectivity, and/or any
other operational state data. Network side contextual data can
be received from and/or queried from network service pro-
viders (e.g., cell provider 112 and/or Internet service provid-
ers) of the network 106 and/or network 108 (e.g., by the host
server and/or devices 150). In addition to application context
awareness as determined from the client 150 side, the appli-
cation context awareness may also be received from or
obtained/queried from the respective application/service pro-
viders 110 (by the host 100 and/or client devices 150).

The host server 100 can use, for example, contextual infor-
mation obtained for client devices 150, networks 106/108,
applications (e.g., mobile applications), application server/
provider 110, or any combination of the above, to manage the
traffic in the system to satisfy data needs of the client devices
150 (e.g., to satisfy application or any other request including
HTTP request). In one embodiment, the traffic is managed by
the host server 100 to satisty data requests made in response
to explicit or non-explicit user 103 requests (e.g., via user
interface 104) and/or device/application maintenance tasks.
The traffic can be managed such that network consumption
(e.g., use of the cellular network) is conserved for effective
and efficient bandwidth utilization. In addition, the host
server 100 can manage and coordinate such traffic in the
system such that use of device 150 side resources (e.g.,
including but not limited to battery power consumption, radio
use, processor/memory use) are optimized with a general
philosophy for resource conservation while still optimizing
performance and user experience. The host server 100 may
also indirectly manage traffic via creation, selection and/or
deployment of traffic blocking policy for implementation on
the mobile device in some embodiments.

For example, in context of battery conservation, the device
150 can observe user activity (for example, by observing user
keystrokes, backlight status, or other signals via one or more

US 9,271,325 B2

11

input mechanisms, etc.) and alter device 150 behaviors. The
device 150 can also request the host server 100 to alter the
behavior for network resource consumption based on user
activity or behavior.

In one embodiment, the traffic management for resource
conservation and/or keepalive optimization/algorithms for
signaling optimization is performed using a distributed sys-
tem between the host server 100 and client device 150. The
distributed system can include proxy server and cache com-
ponents on the server side 100 and on the device/client side,
for example, as shown by the server cache 135 on the server
100 side and the local cache 185 on the client 150 side. In one
embodiment, the traffic management for reducing signaling
in the network and reducing or alleviating network conges-
tion can be implemented on the mobile device 150 without
any support from the server-side proxy or other network-side
components.

Functions and techniques disclosed for context aware traf-
fic management and keepalive algorithms for resource con-
servation and reducing or optimizing signaling in networks
(e.g., network 106 and/or 108) and devices 150, reside in a
distributed proxy and cache system. The proxy and cache
system can be distributed between, and reside on, a given
client device 150 in part or in whole and/or host server 100 in
part or in whole. The distributed proxy and cache system are
illustrated with further reference to the example diagram
shown in FIG. 1C. Functions and techniques performed by
the proxy and cache components in the client device 150 and
the related components therein are described, respectively, in
detail with further reference to the examples of FIG. 2A.

In one embodiment, client devices 150 communicate with
the host server 100 and/or the application server 110 over
network 106, which can be a cellular network and/or a broad-
band network. To facilitate overall traffic management
between devices 150 and various application servers/content
providers 110 to implement network (bandwidth utilization)
and device resource (e.g., battery consumption), the host
server 100 can communicate with the application server/pro-
viders 110 over the network 108, which can include the Inter-
net (e.g., a broadband network).

In general, the networks 106 and/or 108, over which the
client devices 150, the host server 100, and/or application
server 110 communicate, may be a cellular network, a broad-
band network, a telephonic network, an open network, such
as the Internet, or a private network, such as an intranet and/or
the extranet, or any combination thereof. For example, the
Internet can provide file transfer, remote login, email, news,
RSS, cloud-based services, instant messaging, visual voice-
mail, push mail, VoIP, and other services through any known
or convenient protocol, such as, but not limited to the TCP/IP
protocol, UDP, HTTP, DNS, FTP, UPnP, NSF, ISDN, PDH,
RS-232, SDH, SONET, etc.

The networks 106 and/or 108 include any collection of
distinct networks operating wholly or partially in conjunction
to provide connectivity to the client devices 150 and the host
server 100 and may appear as one or more networks to the
serviced systems and devices. In one embodiment, commu-
nications to and from the client devices 150 can be achieved
by an open network, such as the Internet, or a private network
or broadband network, such as an intranet and/or the extranet.
In one embodiment, communications can be achieved by a
secure communications protocol, such as secure sockets layer
(SSL) or transport layer security (TLS).

In addition, communications can be achieved via one or
more networks, such as, but not limited to, one or more of
WiMazx, a Local Area Network (LAN), Wireless Local Area
Network (WLAN), a Personal area network (PAN), a Campus

10

15

20

25

30

35

40

45

50

55

60

12

area network (CAN), a Metropolitan area network (MAN), a
Wide area network (WAN), a Wireless wide area network
(WWAN), or any broadband network, and further enabled
with technologies such as, by way of example, Global System
for Mobile Communications (GSM), Personal Communica-
tions Service (PCS), Bluetooth, WiFi, Fixed Wireless Data,
2G, 2.5G, 3G (e.g., WCDMA/UMTS-based 3G networks),
4G, IMT-Advanced, pre-4G, LTE Advanced, mobile WiMax,
WiMax 2, WirelessMAN-Advanced networks, enhanced data
rates for GSM evolution (EDGE), General packet radio ser-
vice (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA,
HSUPA, HSPA, HSPA+, UMTS-TDD, 1xRTT, EV-DO, mes-
saging protocols such as, TCP/IP, SMS, MMS, extensible
messaging and presence protocol (XMPP), real time messag-
ing protocol (RTMP), instant messaging and presence proto-
col (IMPP), instant messaging, USSD, IRC, or any other
wireless data networks, broadband networks, or messaging
protocols.

FIG. 1C depicts an example diagram of a proxy and cache
system distributed between the host server and device which
facilitates network traffic management between a device, an
application server or content provider, or other servers such as
an ad server, promotional content server, an e-coupon server
or a messaging server (e.g., Google Cloud Messaging (GCM)
server, the Exchange ActiveSync (EAS) server) for resource
conservation and content caching. The proxy system distrib-
uted among the host server and the device can further identify
keepalives from a TCP stream on the mobile device for opti-
mizing keepalive traffic in a mobile network.

The distributed proxy and cache system can include, for
example, the proxy server 125 (e.g., remote proxy) and the
server cache 135 components on the server side. The server-
side proxy 125 and cache 135 can, as illustrated, reside inter-
nal to the host server 100. In addition, the proxy server 125
and cache 135 on the server-side can be partially or wholly
external to the host server 100 and in communication via one
or more of the networks 106 and 108. For example, the proxy
server 125 may be external to the host server and the server
cache 135 may be maintained at the host server 100. Alterna-
tively, the proxy server 125 may be within the host server 100
while the server cache 135 is external to the host server 100.
In addition, each of the proxy server 125 and the server cache
135 may be partially internal to the host server 100 and
partially external to the host server 100. The application
server/content provider 110 can be any server including third-
party servers or service/content providers further including
advertisement, promotional content, publication, or elec-
tronic coupon servers or services. Similarly, separate adver-
tisement servers 120A, promotional content servers 120B,
e-Coupon servers 120C, and/or messaging servers (e.g.,
GCM, EAS servers) 120D as application servers or content
providers are illustrated by way of example.

The distributed system can also include, in one embodi-
ment, client-side components, including by way of example
but not limitation, a local proxy 175 (e.g., a mobile client on
a mobile device) and/or a local cache 185, which can, as
illustrated, reside internal to the device 150 (e.g., a mobile
device).

In addition, the client-side proxy 175 and local cache 185
can be partially or wholly external to the device 150 and in
communication via one or more of the networks 106 and 108.
For example, the local proxy 175 may be external to the
device 150 and the local cache 185 may be maintained at the
device 150. Alternatively, the local proxy 175 may be within
the device 150 while the local cache 185 is external to the
device 150. In addition, each of the proxy 175 and the cache

US 9,271,325 B2

13

185 may be partially internal to the host server 100 and
partially external to the host server 100.

In one embodiment, the distributed system can include an
optional caching proxy server 199. The caching proxy server
199 can be a component which is operated by the application
server/content provider 110, the host server 100, or a network
service provider (e.g., 112), and or any combination of the
above to facilitate network traffic management for network
and device resource conservation. Proxy server 199 can be
used, for example, for caching content to be provided to the
device 150, for example, from one or more of, the application
server/provider 110, host server 100, and/or a network service
provider. Content caching can also be entirely or partially
performed by the remote proxy 125 to satisfy application
requests or other data requests at the device 150.

In context-aware traffic management and optimization for
resource conservation and/or keepalive optimization in sig-
naling optimization in a network (e.g., cellular or other wire-
less networks), characteristics of user activity/behavior and/
or application behavior at a mobile device (e.g., any wireless
device) 150 can be tracked by the local proxy 175 and com-
municated over the network 106 to the proxy server 125
component in the host server 100, for example, as connection
metadata. The proxy server 125, which in turn is coupled to
the application server/provider 110, provides content and
data to satisfy requests made at the device 150. The local
proxy 175 can be a protocol-agnostic component that can
identify keepalives from the TCP stream, regardless of the
application layer protocol.

In addition, the local proxy 175 can identify and retrieve
mobile device properties, including one or more of battery
level, network that the device is registered on, radio state,
signal strength, cell identifier (i.e., cell ID), location area
code, or whether the mobile device is being used (e.g., inter-
acted with by a user). In some instances, the local proxy 175
can delay, expedite (prefetch), and/or modify data prior to
transmission to the proxy server 125, when appropriate, as
will be further detailed with references to the description
associated with the examples of FIG. 2A.

The local cache 185 can be included in the local proxy 175
or coupled to the local proxy 175 and can be queried for a
locally stored response to the data request prior to the data
request being forwarded on to the proxy server 125. Locally
cached responses can be used by the local proxy 175 to satisfy
certain application requests of the mobile device 150, by
retrieving cached content stored in the cache storage 185,
when the cached content is still valid.

Similarly, the proxy server 125 of the host server 100 can
also delay, expedite, or modify data from the local proxy prior
to transmission to the content sources (e.g., the application
server/content provider 110). In addition, the proxy server
125 uses device properties and connection metadata to gen-
erate rules for satisfying request of applications on the mobile
device 150. The proxy server 125 can gather real time traffic
information about requests of applications for later use in
optimizing similar connections with the mobile device 150 or
other mobile devices. The proxy server 125 can also receive
or aggregate network communication data logs and perform
statistical analyses on data sent and received to determine
regular intervals and regular byte sizes for keepalives from
various applications. The proxy server 125 can further push
such information to multiple mobile devices to equip the
mobile devices for keepalive detection and subsequent kee-
palive optimization.

In general, the local proxy 175 and the proxy server 125 are
transparent to the multiple applications executing on the
mobile device. The local proxy 175 is generally transparent to

5

10

15

20

25

30

35

40

45

55

60

65

14

the operating system or platform of the mobile device and
may or may not be specific to device manufacturers. In some
instances, the local proxy 175 is optionally customizable in
part or in whole to be device specific. In some embodiments,
the local proxy 175 may be bundled into a wireless model, a
firewall, and/or a router.

In one embodiment, the host server 100 can in some
instances, utilize the store and forward functions of a short
message service center (SMSC) 162, such as that provided by
the network service provider, in communicating with the
device 150 in achieving network traffic management. Note
that SMSC 162 can also utilize any other type of alternative
channel including USSD or other network control mecha-
nisms. The host server 100 can forward content or HTTP
responses to the SMSC 162 such that it is automatically
forwarded to the device 150 if available and for subsequent
forwarding if the device 150 is not currently available.

In general, the disclosed distributed proxy and cache sys-
tem enables identification of keepalives from the TCP stream
for keepalive optimization. The disclosed distributed proxy
and cache system further enables optimization of network
usage, for example, by serving requests from the local cache
185, the local proxy 175 reduces the number of requests that
need to be satisfied over the network 106. Further, the local
proxy 175 and the proxy server 125 may filter irrelevant data
from the communicated data. In addition, the local proxy 175
and the proxy server 125 can also accumulate low priority
data and send it in batches to avoid the protocol overhead of
sending individual data fragments. The local proxy 175 and
the proxy server 125 can also compress or transcode the
traffic, reducing the amount of data sent over the network 106
and/or 108. The signaling traffic in the network 106 and/or
108 can be reduced, as the networks are now used less often
and the network traffic can be synchronized among individual
applications.

With respect to the battery life of the mobile device 150, by
serving application or content requests from the local cache
185, the local proxy 175 can reduce the number of times the
radio module is powered up. The local proxy 175 and the
proxy server 125 can work in conjunction to accumulate low
priority data and send it in batches to reduce the number of
times and/or amount of time when the radio is powered up.
The local proxy 175 can synchronize the network use by
performing the batched data transfer for all connections
simultaneously. Furthermore, by preventing the mobile
device from constantly attempting to signal the network that
is congested, and/or allowing selective (e.g., high priority)
traffic towards the network, the local proxy 175 can conserve
battery resources of the mobile device.

FIG. 1D illustrates an example diagram of the logical
architecture of a distributed proxy and cache system. The
distributed system can include, for example the following
components:

Client Side Proxy 175: a component installed in a smart-
phone, mobile device or wireless device 150 that interfaces
with device’s operating system, as well as with data services
and applications installed in the device. The client side proxy
175 is typically compliant with and able to operate with
standard or state of the art networking protocols. Additional
components and features of the client-side proxy 175 are
illustrated with further references to the examples of F1IG. 2A.

The server side proxy 125 can include one or more servers
that can interface with third-party application servers (e.g.,
199), mobile operator’s network (which can be proxy 199 or
an additional server that is not illustrated) and/or the client
side proxy 175. In general, the server side proxy 125 can be
compliant with and is generally able to operate with standard

US 9,271,325 B2

15

or state of the art networking protocols and/or specifications
for interacting with mobile network elements and/or third-
party servers. In one embodiment, the server-side proxy 125
can utilize the store and forward functions of a short message
service center (SMSC) 162 in communicating with the client-
side proxy 175 on the mobile device 150 to optimize network
traffic.

Log Storage and Processing Service (LSPS) 174: The log
storage and processing service, server, system or component
174 can provide reporting and usage analytics services. The
LSPS 174 can collect information (e.g., logs) from the client
side 175 and/or the server side 125 and provide the necessary
tools for producing reports and usage analytics that can be
used for analyzing traffic and signaling data. The client logs
(e.g., logs on the client device 150 aggregated by the local
proxy 175) are stored in the device until a data channel is
activated, and they are then transferred in binary format to the
LSPS 174. In one embodiment, the logs are processed using
log processing tools provided by the LSPS 174. The pro-
cessed logs are subsequently stored in a distributed database.
The logs may be used for reporting as well as for trouble-
shooting issues. For example, analytics from the logs can be
used by the proxy system in managing, reducing or optimiz-
ing network traffic or by the network operator in monitoring
their networks for possible improvements and enhancements.
Note that LSPS 174 as illustrated may be a server separate
from the server-side proxy 125, or it may be a component of
the server-side proxy 125, residing partially or wholly
therein.

In one implementation, the level of logging (e.g., types of
data to be logged, and the like) can be specified using con-
figuration settings in the client-side proxy 175 and/or the
server-side proxy 125. Various data relating to bytes and
transactions, network connectivity, power, subscriber count,
and the like may be logged, and/or processed using default (or
other) settings on a periodic (e.g., hourly, daily, and the like)
basis.

Bytes and Transactions data may include a number of bytes
transacted (both to and from), the total number of transactions
between the client-side proxy 175 and each application, the
client-side proxy 175 and the network (e.g., radio access
network 112), the client-side proxy 175 and its cache, and the
like. Network Connectivity data may include, for example,
total time the device spends in “data connected” state (based
on a two-state connectivity model), total number of transi-
tions into the data connected state, the number of times the
radio transitions into the data connected state due to a network
request that was proxied through the client-side proxy 175,
total time spent in the data connected state due to a network
request that was proxied through the client-side proxy 175,
the number of transitions into data connected mode saved by
the client-side and/or server-side proxy system, the amount of
time in data connected state saved by the client-side and/or
server-side proxy system, simulated values for the previous
four items, as if traffic proxied via client-side and/or server-
side proxy system were the only traffic on the device. Net-
work connectivity data can also include the amount of time
taken to transition from an idle state to connected state (i.e.,
setup time), a baseline or a reference determined from a
sample of setup times, and the like. Power-related data may
include, for example, each one-percent (or any other percent-
age value) change in the battery level, the total time the device
is powered on but not connected to a power source, and the
like. Subscriber count data may include, for example, the
number of new subscribers observed in a period and the
number of active subscribers in the period. This data may be
aggregated by the host server, for example. Reporting of the

10

15

20

25

30

35

40

45

50

55

60

65

16

above data can be done based on variables such as network
bearer type (e.g., all, mobile or Wi-Fi), category (e.g., all,
device model or application name), time (e.g., hour, day or
month), and the like, or combinations thereof.

FIG. 1E illustrates an example diagram showing the archi-
tecture of client-side components in a distributed proxy and
cache system having a keepalive optimizer for optimizing
keepalive and other background traffic in a wireless network.

The client-side proxy 175 components can include soft-
ware components or agents installed on the mobile device that
enable traffic optimization and perform the related function-
alities on the client side. Mobile OS and Apps 165 include
components of the client side proxy 175 can operate trans-
parently for end users and applications 163, and interface
with the device’s operating system (OS) 162. The client side
proxy 175 can be installed on mobile devices for optimization
to take place, and it can effectuate changes on the data routes
and/or timing. Once data routing is modified, the client side
proxy 175 can respond to application requests to service
providers or host servers, in addition to or instead of letting
those applications 163 access data network directly. In gen-
eral, applications 163 on the mobile device will not notice that
the client side proxy 175 is responding to their requests.

Some example components of the client side proxy 175 are
described as follows:

Device State Monitor 121: The device state monitor 121
can be responsible for identifying several states and metrics in
the device, such as network status (e.g., radio on/off status,
connected to Wi-Fi, 2G, 3G or other mobile network), display
status, battery level (e.g., via the radio/battery information
161), transparent mode status, etc., such that the remaining
components in the client side proxy 175 can operate and make
decisions according to device state, acting in an optimal way
in each state.

Traffic Recognizer 122: The traffic recognizer 122 ana-
lyzes all traffic between the wireless device applications 163
and their respective host servers in order to identify recurrent
patterns. Supported transport protocols include, for example,
DNS, HTTP and HTTPS, such that traffic through those ports
is directed to the client side proxy 175. While analyzing
traffic, the client side proxy 175 can identify recurring polling
patterns which can be candidates to be performed remotely by
the server side proxy 125, and send to the protocol optimizer
123.

Protocol Optimizer 123: The protocol optimizer 123 can
implement the logic of serving recurrent requests from the
local cache 185 instead of allowing those request go over the
network to the service provider/application host server. One
of its tasks is to eliminate or minimize the need to send
requests to the network, positively affecting network conges-
tion and device battery life.

Local Cache 185: The local cache 185 can store responses
to recurrent requests, and can be used by the Protocol Opti-
mizer 123 to send responses to the applications 163.

Traffic Scheduler 124: The traffic scheduler 124 can tem-
porally move communications to optimize usage of device
resources by unifying keepalive signaling so that some or all
of'the different applications 163 can send keepalive messages
at the same time (traffic pipelining). Traffic scheduler 124
may also decide to delay transmission of data that is not
relevant at a given time (for example, when the device is not
actively used).

Thekeepalive detector 305: The keepalive detector 305 can
detect keepalives based on various methodologies from the
TCP stream to enable keepalive optimization, which can con-
serve resources on the mobile device and the network. In
some embodiments, the keepalive detector 305 implementing

US 9,271,325 B2

17

the keepalive detection technology enables keepalives from
applications to be detected in real-time, based on information
related to the interval between data sent/received, size of the
data sent/received, whether the data sent/received are associ-
ated with the same connection identifier, or the like. Various
aspects of the keepalive detector 305 are described in detail
with respect to FIG. 3.

The keepalive optimizer 300: Once the keepalives are
detected by the keepalive detector, the keepalive optimizer
300 can optimize keepalive and other non-user interactive or
background traffic using various methodologies. In one
embodiment, the keepalive optimizer 300 can improve the
efficiency of keepalive transactions and manage long-lived
connections between mobile applications and associated
application/host servers. For example, the keepalive opti-
mizer 300 can manage long-lived connections with fewer
keepalives, utilize radio-awareness, application behavior
and/or device state to schedule transmission of keepalives and
other background traffic, and the like. By performing these
optimizations, the keepalive optimizer 300 can reduce unnec-
essary traffic in the mobile network, reduce battery resource
consumption on mobile devices, save on bandwidth resource
consumption and manage long-lived connections among oth-
ers. Various aspects of keepalive optimization techniques of
the keepalive optimizer 300 are described in detail in a related
U.S. Provisional Patent Application Ser. No. 61/833,838
titled “KEEPALIVE ALGORITHMS FOR SIGNALING
OPTIMIZATION IN A WIRELESS NETWORK FOR
TRAFFIC UTILIZING PROPRIETARY AND NON-PRO-
PRIETARY PROTOCOLS” filed on Jun. 11, 2013 and U.S.
Provisional Patent Application Ser. No. 61/836,095 titled
“ENGINEERING DELAY IN SENDING BACKGROUND
REQUESTS FOR SIGNALING OPTIMIZATION IN A
WIRELESS NETWORK FOR TRAFFIC UTILIZING PRO-
PRIETARY AND NON-PROPRIETARY PROTOCOLS”
filed on Jun. 17, 2013, the entire content of which are incor-
porated by reference herein.

Policy Manager 129: The policy manager 129 can store and
enforce traffic optimization and reporting policies provi-
sioned by a Policy Management Server (PMS). At the client
side proxy 175 first start, traffic optimization and reporting
policies (policy profiles) that are to be enforced in a particular
device can be provisioned by the Policy Management Server.
Enforcing traffic management policies at the device’s IP layer
lets an operator manage traffic before it uses radio accessed
network resources. Policy usage can range from creating
highly targeted subscriber plans to proactively and/or reac-
tively managing network congestion. In one implementation,
the conditions for selecting a policy for enforcement, and/or
conditions for dropping an implemented policy, may be man-
aged or coordinated by the policy manager 129. For example,
in some embodiments, the policy manager 129 can manage
and implement keepalive and other background traffic opti-
mization policies such as blocking policies, delaying policies,
transmission policies, and/or the like configured and provi-
sioned by the PMS. For example, the PMS can have two
policy configurations for optimizing background requests:
(1) true to enable the optimization and false to disable the
optimization and (2) length of delay cycle to be applied if
there is no other event triggering undelay. Similarly, the PMS
can provide and the policy manager 129 can implement other
configurations for various components of the keepalive opti-
mizer 300. In one embodiment, the policy manager 129 can
receive and implement a policy configuration from the PMS
to enable or disable the keepalive optimizer 300 and/or the
keepalive detector 305 at an application level or at a user or
device level. In some embodiments, the policy manager 129

10

15

20

25

30

35

40

45

50

55

60

65

18

can also receive and manage configuration parameters or
settings for detecting keepalives by the keepalive detector
305.

Watch Dog 127: The watch dog 127 can monitor the client
side proxy 175 operating availability. In case the client side
proxy 175 is not working due to a failure or because it has
been disabled, the watchdog 127 can reset DNS routing rules
information and can restore original DNS settings for the
device to continue working until the client side proxy 175
service is restored.

Reporting Agent 126: The reporting agent 126 can gather
information (e.g., logs) about the events taking place in the
device and send the information to the log storage and pro-
cessing service 174, which collects and stores client-side
and/or server-side proxy system logs. Event details are stored
temporarily in the device and transferred to log storage and
processing service 174 only when the data channel state is
active. If the client side proxy 175 does not send records
within a period of time (e.g., twenty-four hours), the reporting
agent 126 may, in one embodiment, attempt to open the
connection and send recorded entries or, in case there are no
entries in storage, an empty reporting packet. All reporting
settings may be configured in the policy management server
(PMS). The information in the logs may be used for reporting
and/or troubleshooting, for example.

Push Client 128: The push client 128 can be responsible for
the traffic between the server side proxy 125 and the client
side proxy 175. The push client 128 can send out service
requests like content update requests and policy update
requests, and can receive updates to those requests from the
server side proxy 125. In addition, push client 128 can send
data to a log storage and processing service 174, which may
be internal to or external to the server side proxy 125.

The proxy server 199 has a wide variety of uses, from
speeding up a web server by caching repeated requests, to
caching web, DNS and other network lookups for a group of
clients sharing network resources. The proxy server 199 is
optional. The distributed proxy and cache system (125 and/or
175) allows for a flexible proxy configuration using either the
proxy 199, additional proxy(s) in operator’s network, or inte-
grating both proxies 199 and an operator’s or other third-
party’s proxy.

FIG. 2A depicts a block diagram illustrating another
example of client-side components in a distributed proxy and
cache system, further including a keepalive detector that can
identify keepalives from a TCP stream. The client-side com-
ponents in a distributed proxy and cache system can reside on
a mobile device (e.g., wireless device) 250 that manages
traffic in a wireless network (or broadband network) for kee-
palive detection, keepalive optimization, signaling optimiza-
tion, resource conservation, content caching, and/or traffic
management.

FIG. 2B depicts a block diagram illustrating additional
components in the local proxy shown in the example of FIG.
2A which is further capable of performing mobile traffic
categorization and management based on application behav-
ior and/or user activity.

The mobile device 250, which can be a device that is
portable or mobile (e.g., any wireless device, e.g., mobile
device 150 from FIG. 1B-1E), such as a portable phone,
generally includes, for example, a network interface 208, an
operating system 204, a context API 206, and mobile appli-
cations which may be proxy-unaware 210 or proxy-aware
220. Note that while the client device 250 is specifically
illustrated in the example of FIG. 2A as a mobile device, such
depiction is not a limitation, and mobile device 250 may be
any wireless, broadband, portable/mobile or non-portable

US 9,271,325 B2

19

device able to receive and/or transmit signals to satisfy data
requests over a network including wired or wireless networks
(e.g., Wi-Fi, cellular, Bluetooth, LAN, WAN, and the like).

The network interface 208 can be a networking module that
enables the device 250 to mediate data in a network with an
entity that is external to the mobile device 250, through any
known and/or convenient communications protocol sup-
ported by the mobile device and the external entity. The
network interface 208 can include one or more of a network
adaptor card, a wireless network interface card (e.g., SMS
interface, Wi-Fi interface, interfaces for various generations
of mobile communication standards including but not limited
t0 2G, 3G, 3.5G, 4G, LTE, etc.), Bluetooth, or whether or not
the connection is via a router, an access point, a wireless
router, a switch, a multilayer switch, a protocol converter, a
gateway, a bridge, a bridge router, a hub, a digital media
receiver, and/or a repeater.

Device 250 can further include, client-side components of
the distributed proxy and cache system which can include, a
local proxy 275 (e.g., a mobile client of a mobile device) and
acache 285. In one embodiment, the local proxy 275 includes
a user activity module 215, a proxy API 225, a request/
transaction manager 235, a caching policy manager 245 hav-
ing an application protocol module 248, a traffic shaping
engine 255, and/or a connection manager 265. The traffic
shaping engine 255 may further include an alignment module
256 and/or a batching module 257, the connection manager
265 may further include a radio controller 266, a heartbeat
manager 267, a keepalive detector 305 and a keepalive opti-
mizer 300. The request/transaction manager 235 can further
include an application behavior detector 236 having a priori-
tization engine 241, a pattern detector 237, an application
profile generator 239, a time criticality detection engine 242,
an application state categorizer 243 and an application traffic
categorizer 244. In one embodiment, the local proxy or the
device can further include a proprietary/non-standard proto-
col adaptation engine 270 for optimizing traffic in a protocol
agnostic manner.

Additional or less components/modules/engines can be

included in the local proxy 275 and each illustrated compo-
nent.
As used herein, a “module,” “manager,” “handler,” “detec-
tor,” “optimizer,” “interface,” “controller,” “normalizer,”
“generator,” “invalidator,” or “engine” includes a general pur-
pose, dedicated or shared processor and, typically, firmware
or software modules that are executed by the processor.
Depending upon implementation-specific or other consider-
ations, the module, manager, handler, detector, optimizer,
interface, controller, normalizer, generator, invalidator, or
engine can be centralized or its functionality distributed. The
module, manager, handler, detector, optimizer, interface, con-
troller, normalizer, generator, invalidator, or engine can
include general or special purpose hardware, firmware, or
software embodied in a computer-readable (storage) medium
for execution by the processor.

Asused herein, a computer-readable medium or computer-
readable storage medium is intended to include all mediums
that are statutory (e.g., in the United States, under 35 U.S.C.
101), and to specifically exclude all mediums that are non-
statutory in nature to the extent that the exclusion is necessary
for a claim that includes the computer-readable (storage)
medium to be valid. Known statutory computer-readable
mediums include hardware (e.g., registers, random access
memory (RAM), non-volatile (NV) storage, to name a few),
but may or may not be limited to hardware.

In one embodiment, a portion of the distributed proxy and
cache system for mobile traffic management resides in or is in

2 < 2 <

10

15

20

25

30

35

40

45

50

55

60

65

20

communication with the mobile device 250, including local
proxy 275 (mobile client) and/or cache 285. The local proxy
275 can provide an interface on the mobile device 250 for
users to access device applications and services including
email, IM, voice mail, visual voicemail, feeds, Internet,
games, productivity tools, or other applications, etc.

The local proxy 275 is generally application independent
and can be used by applications (e.g., both proxy-aware and
proxy-unaware applications 210 and 220 and other mobile
applications) to open TCP (Transport Control Protocol) or
other protocol based connections to a remote server (e.g., the
server 100 in the examples of FIG. 1B-1C and/or server proxy
125 shown in the examples of FIG. 1B). In some instances,
the local proxy 275 includes a proxy API 225 which can be
optionally used to interface with proxy-aware applications
220 (or applications (e.g., mobile applications) on a mobile
device (e.g., any wireless device)).

The applications 210 and 220 can generally include any
user application, widgets, software, HT'TP-based application,
web browsers, video or other multimedia streaming or down-
loading application, video games, social network applica-
tions, email clients, RSS management applications, applica-
tion stores, document management applications, productivity
enhancement applications, and the like. The applications can
be provided with the device OS, by the device manufacturer,
by the network service provider, downloaded by the user, or
provided by others.

One embodiment of the local proxy 275 includes or is
coupled to a context API 206, as shown. The context AP1 206
may be a part of the operating system 204 or device platform
or independent of the operating system 204, as illustrated.
The operating system 204 can include any operating system
including but not limited to, any previous, current, and/or
future versions/releases of, Windows Mobile, i10S, Android,
Symbian, Palm OS, Brew MP, Java 2 Micro Edition (J2ME),
Blackberry, etc.

The context API 206 may be a plug-in to the operating
system 204 or a particular client/application on the device
250. The context AP1206 can detect signals indicative of user
or device activity, for example, sensing motion, gesture,
device location, changes in device location, device backlight,
keystrokes, clicks, activated touch screen, mouse click or
detection of other pointer devices. The context AP1206 can be
coupled to input devices or sensors on the device 250 to
identify these signals. Such signals can generally include
input received in response to explicit user input at an input
device/mechanism at the device 250 and/or collected from
ambient signals/contextual cues detected at or in the vicinity
of the device 250 (e.g., light, motion, piezoelectric, etc.).

In one embodiment, the user activity module 215 interacts
with the context API 206 to identify, determine, infer, detect,
compute, predict, and/or anticipate, characteristics of user
activity on the device 250. Various inputs collected by the
context API 206 can be aggregated by the user activity mod-
ule 215 to generate a profile for characteristics of user activity.
Such a profile can be generated by the user activity module
215 with various temporal characteristics. For instance, user
activity profile can be generated in real-time for a given
instant to provide a view of what the user is doing or not doing
at a given time (e.g., defined by a time window, in the last
minute, in the last 30 seconds, etc.), a user activity profile can
also be generated for a “session’ defined by an application or
web page that describes the characteristics of user behavior
with respect to a specific task they are engaged in on the
mobile device 250, or for a specific time period (e.g., for the
last 2 hours, for the last 5 hours).

US 9,271,325 B2

21

Additionally, characteristic profiles can be generated by
the user activity module 215 to depict a historical trend for
user activity and behavior (e.g., 1 week, 1 mo., 2 mo., etc.).
Such historical profiles can also be used to deduce trends of
user behavior, for example, access frequency at different
times of day, trends for certain days of the week (weekends or
week days), user activity trends based on location data (e.g.,
1P address, GPS, or cell tower coordinate data) or changes in
location data (e.g., user activity based on user location, or user
activity based on whether the user is on the go, or traveling
outside a home region, etc.) to obtain user activity character-
istics.

In one embodiment, user activity module 215 can detect
and track user activity with respect to applications, docu-
ments, files, windows, icons, and folders on the device 250.
For example, the user activity module 215 can detect when an
application or window (e.g., a web browser or any other type
of application) has been exited, closed, minimized, maxi-
mized, opened, moved into the foreground or into the back-
ground, multimedia content playback, etc.

In one embodiment, characteristics of the user activity on
the device 250 can be used to locally adjust behavior of the
device (e.g., mobile device or any wireless device) to opti-
mize its resource consumption such as battery/power con-
sumption and more generally, consumption of other device
resources including memory, storage, and processing power,
and/or further optimize signaling in the network. In one
embodiment, the use of a radio on a device can be adjusted
based on characteristics of user behavior (e.g., by the radio
controller 266 of the connection manager 265) coupled to the
user activity module 215. For example, the radio controller
266 can turn the radio on or off, based on characteristics of the
user activity on the device 250. In addition, the radio control-
ler 266 can adjust the power mode of the radio (e.g., to be in
a higher power mode or lower power mode) depending on
characteristics of user activity.

In one embodiment, characteristics of the user activity on
device 250 can also be used to cause another device (e.g.,
other computers, a mobile device, a wireless device, or a
non-portable device) or server (e.g., host server 100 in the
examples of FIG. 1B-1C) which can communicate (e.g., via a
cellular or other network) with the device 250 to modify its
communication frequency with the device 250. The local
proxy 275 can use the characteristics information of user
behavior determined by the user activity module 215 to
instruct the remote device as to how to modulate its commu-
nication frequency (e.g., decreasing communication fre-
quency, such as data push frequency if the user is idle,
requesting that the remote device notify the device 250 if new
data, changed, data, or data of a certain level of importance
becomes available, etc.).

In one embodiment, the user activity module 215 can, in
response to determining that user activity characteristics indi-
cate that a user is active after a period of inactivity, request
that a remote device (e.g., server host server 100 or the net-
work-side proxy 125 in the examples of FIG. 1B-1C) send the
data that was buftered as a result of the previously decreased
communication frequency.

In addition, or in alternative, the local proxy 275 can com-
municate the characteristics of user activity at the device 250
to the remote device (e.g., host server 100 or the network-side
proxy 125 in the examples of FIG. 1B-1C) and the remote
device determines how to alter its own communication fre-
quency with the device 250 for network resource conserva-
tion and conservation of resources of the mobile device 250.

One embodiment of the local proxy 275 further includes a
request/transaction manager 235, which can detect, identify,

10

15

20

25

30

35

40

45

50

55

60

65

22

intercept, process and manage data requests initiated on the
device 250, for example, by applications 210 and/or 220,
and/or directly/indirectly by a user request. The request/trans-
action manager 235 can determine how and when to process
a given request or transaction, or a set of requests/transac-
tions, based on transaction characteristics.

The request/transaction manager 235 can prioritize
requests or transactions made by applications and/or users at
the device 250, for example by the prioritization engine 241.
Importance or priority of requests/transactions can be deter-
mined by the request/transaction manager 235 by applying a
rule set, for example, according to time sensitivity of the
transaction, time sensitivity of the content in the transaction,
time criticality of the transaction, time criticality of the data
transmitted in the transaction, and/or time criticality or
importance of an application making the request.

In addition, transaction characteristics can also depend on
whether the transaction was a result of user-interaction or
other user-initiated action on the device (e.g., user interaction
with an application (e.g., a mobile application)). In general, a
time critical transaction can include a transaction resulting
from a user-initiated data transfer, and can be prioritized as
such. Transaction characteristics can also depend on the
amount of data that will be transferred or is anticipated to be
transferred as a result of the requested transaction. For
example, the connection manager 265 can adjust the radio
mode (e.g., high power or low power mode via the radio
controller 266) based on the amount of data that will need to
be transferred.

In addition, the radio controller 266/connection manager
265 can adjust the radio power mode (high or low) based on
time criticality/sensitivity of the transaction. The radio con-
troller 266 can trigger the use of high power radio mode when
atime-critical transaction (e.g., a transaction resulting from a
user-initiated data transfer, an application running in the fore-
ground, any other event meeting a certain criteria) is initiated
or detected.

In general, the priorities can be set by default, for example,
based on device platform, device manufacturer, operating
system, etc. Priorities can alternatively or additionally be set
by the particular application; for example, the Facebook
application (e.g., a mobile application) can set its own priori-
ties for various transactions (e.g., a status update can be of
higher priority than an add friend request or a poke request; a
message send request can be ofhigher priority than a message
delete request), or an email client or IM chat client may have
its own configurations for priority. The prioritization engine
241 may include set of rules for assigning priority.

The prioritization engine 241 can also track network pro-
vider limitations or specifications on application or transac-
tion priority in determining an overall priority status for a
request/transaction. Furthermore, priority can in part or in
whole be determined by user preferences, either explicit or
implicit. A user can in general set priorities at different tiers,
such as, specific priorities for sessions, or types, or applica-
tions (e.g., comparing a browsing session, a gaming session,
and an IM chat session, the user may set a gaming session to
always have higher priority than an IM chat session, which
may have higher priority than web-browsing session). A user
can set application-specific priorities, (e.g., a user may set
Facebook-related transactions to have a higher priority than
LinkedIn-related transactions), for specific transaction types
(e.g., for all send message requests across all applications to
have higher priority than message delete requests, for all
calendar-related events to have a high priority, etc.), and/or
for specific folders.

US 9,271,325 B2

23

The prioritization engine 241 can track and resolve con-
flicts in priorities set by different entities. For example,
manual settings specified by the user may take precedence
over device OS settings, network provider parameters/limi-
tations (e.g., set in default for a network service area, geo-
graphic locale, set for a specific time of day, or set based on
service/fee type) may limit any user-specified settings and/or
application-set priorities. In some instances, a manual syn-
chronization request received from a user can override some,
most, or all priority settings in that the requested synchroni-
zation is performed when requested, regardless of the indi-
vidually assigned priority or an overall priority ranking for
the requested action.

Priority can be specified and tracked internally in any
known and/or convenient manner, including but not limited
to, a binary representation, a multi-valued representation, a
graded representation and all are considered to be within the
scope of the disclosed technology.

TABLE 1
Change Change
(initiated on device) Priority (initiated on server) Priority
Send email High Receive email High
Delete email Low Edit email Often not
possible to sync
(Un)read email Low (Low if
possible)
Move message Low New email in Low
deleted items
Read more High
Download High Delete an email Low
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change High Any calendar change High
Calendar event Any contact change High
Add a contact High Wipe/lock device High
Edit a contact High Settings change High
Search contacts High Any folder change High
Change a setting High Connector restart High (if no
Manual send/receive High changes nothing
is sent)
IM status change Medium Social Network Medium
Status Updates
Auction outbid High Severe Weather Alerts High
or change
notification
Weather Updates Low News Updates Low

Table 1 above shows, for illustration purposes, some
examples of transactions with examples of assigned priorities
in a binary representation scheme. Additional assignments
are possible for additional types of events, requests, transac-
tions, and as previously described, priority assignments can
be made at more or less granular levels, e.g., at the session
level or at the application level, etc.

As shown by way of example in the above table, in general,
lower priority requests/transactions can include updating
message status as being read, unread, deleting of messages,
deletion of contacts; higher priority requests/transactions
can, in some instances include, status updates, new IM chat
message, new email, calendar event update/cancellation/de-
letion, an event in a mobile gaming session, or other enter-
tainment related events, a purchase confirmation through a
web purchase or online, request to load additional or down-
load content, contact book related events, a transaction to
change a device setting, location-aware or location-based
events/transactions, or any other events/request/transactions
initiated by a user or where the user is known to be, expected
to be, or suspected to be waiting for a response, etc.

10

15

20

25

30

35

40

45

50

55

60

65

24

Inbox pruning events (e.g., email, or any other types of
messages) are generally considered low priority and, absent
other impending events, generally will not trigger use of the
radio on the device 250. Specifically, pruning events to
remove old email or other content can be ‘piggy backed’ with
other communications if the radio is not otherwise on, at the
time of a scheduled pruning event. For example, if the user
has preferences set to ‘keep messages for 7 days old,” then
instead of powering on the device radio to initiate deletion of
the message from the device 250 the moment that the message
has exceeded 7 days old, the message is deleted when the
radio is powered on next. If the radio is already on, then
pruning may occur as regularly scheduled.

The request/transaction manager 235 can use the priorities
for requests (e.g., by the prioritization engine 241) to manage
outgoing traffic from the device 250 for resource optimization
(e.g., to utilize the device radio more efficiently for battery
conservation). For example, transactions/requests below a
certain priority ranking may not trigger use of the radio on the
device 250 if the radio is not already switched on, as con-
trolled by the connection manager 265. In contrast, the radio
controller 266 can turn on the radio such that a request can be
sent when a request for a transaction is detected to be over a
certain priority level.

In one embodiment, priority assignments (such as that
determined by the local proxy 275 or another device/entity)
can be used to cause a remote device to modify its commu-
nication with the frequency with the mobile device or wire-
less device. For example, the remote device can be configured
to send notifications to the device 250 when data of higher
importance is available to be sent to the mobile device or
wireless device.

In one embodiment, transaction priority can be used in
conjunction with characteristics of user activity in shaping or
managing traffic, for example, by the traffic shaping engine
255. For example, the traffic shaping engine 255 can, in
response to detecting that a user is dormant or inactive, wait to
send low priority transactions from the device 250, for a
period of time. In addition, the traffic shaping engine 255 can
allow multiple low priority transactions to accumulate for
batch transferring from the device 250 (e.g., via the batching
module 257). In one embodiment, the priorities can be set,
configured, or readjusted by a user. For example, content
depicted in Table 3 in the same or similar form can be acces-
sible in a user interface on the device 250 and for example,
used by the user to adjust or view the priorities.

The batching module 257 can initiate batch transter based
on certain criteria. For example, batch transfer (e.g., of mul-
tiple occurrences of events, some of which occurred at differ-
ent instances in time) may occur after a certain number of low
priority events have been detected, or after an amount of time
elapsed after the first of the low priority event was initiated. In
addition, the batching module 257 can initiate batch transfer
of'the accumulated low priority events when a higher priority
event is initiated or detected at the device 250. Batch transfer
can otherwise be initiated when radio use is triggered for
another reason (e.g., to receive data from a remote device
such as host server 100, server-side proxy 125). In one
embodiment, an impending pruning event (pruning of an
inbox), or any other low priority events, can be executed when
a batch transfer occurs.

In general, the batching capability can be disabled or
enabled at the event/transaction level, application level, or
session level, based on any one or combination of the follow-
ing: user configuration, device limitations/settings, manufac-
turer specification, network provider parameters/limitations,
platform-specific limitations/settings, device OS settings,

US 9,271,325 B2

25

etc. In one embodiment, batch transfer can be initiated when
an application/window/file is closed out, exited, or moved
into the background; users can optionally be prompted before
initiating a batch transfer; users can also manually trigger
batch transfers.

In one embodiment, the local proxy 275 locally adjusts
radio use on the device 250 by caching data in the cache 285.
When requests or transactions from the device 250 can be
satisfied by content stored in the cache 285, the radio control-
ler 266 need not activate the radio to send the request to a
remote entity (e.g., the host server 100 as shown in FIG. 1B,
the host server 400 as shown in FIG. 4A or a content provider/
application server such as the server/provider 110 shown in
the examples of FIGS. 1B-1C). As such, the local proxy 275
can use the local cache 285 and the cache policy manager 245
to locally store data for satisfying data requests to eliminate or
reduce the use of the device radio for conservation of network
resources and device battery consumption.

In leveraging the local cache, once the request/transaction
manager 235 intercepts a data request by an application on the
device 250, the local cache repository 285 can be queried to
determine if there is any locally stored response, and also
determine whether the response is valid. When a valid
response is available in the local cache 285, the response can
be provided to the application on the device 250 without the
device 250 needing to access the cellular network or wireless
broadband network.

If'a valid response is not available, the local proxy 275 can
query a remote proxy (e.g., the server proxy 125 of FIG. 4A)
to determine whether a remotely stored response is valid. If
s0, the remotely stored response (e.g., which may be stored on
the server cache 135 or optional caching server 199 shown in
the example of FIG. 1C) can be provided to the mobile device,
possibly without the mobile device 250 needing to access the
cellular network, thus relieving consumption of network
resources.

If a valid cache response is not available, or if cache
responses are unavailable for the intercepted data request, the
local proxy 275, for example, can send the data request to a
remote proxy (e.g., server proxy 125 of FIG. 4A) which
forwards the data request to a content source (e.g., application
server/content provider 110 of FIG. 1B), and a response from
the content source can be provided through the remote proxy,
as will be further described in the description associated with
the example host server 400 of FIG. 4A. The cache policy
manager 245 can manage or process requests that use a vari-
ety of protocols, including but not limited to HTTP, HTTPS,
IMAP, POP, SMTP, XMPP, and/or ActiveSync. The caching
policy manager 245 can locally store responses for data
requests in the local database 285 as cache entries, for subse-
quent use in satisfying same or similar data requests.

The caching policy manager 245 can request that the
remote proxy monitor responses for the data request and the
remote proxy can notify the device 250 when an unexpected
response to the data request is detected. In such an event, the
cache policy manager 245 can erase or replace the locally
stored response(s) on the device 250 when notified of the
unexpected response (e.g., new data, changed data, additional
data, etc.) to the data request. In one embodiment, the caching
policy manager 245 is able to detect or identify the protocol
used for a specific request, including but not limited to HTTP,
HTTPS, IMAP, POP, SMTP, XMPP, and/or ActiveSync. In
one embodiment, application specific handlers (e.g., via the
application protocol module 248 of the caching policy man-
ager 245) on the local proxy 275 allows for optimization of

20

40

45

26

any protocol that can be port mapped to a handler in the
distributed proxy (e.g., port mapped on the proxy server 125
in the example of FIG. 4A).

In one embodiment, the local proxy 275 notifies the remote
proxy such that the remote proxy can monitor responses
received for the data request from the content source for
changed results prior to returning the result to the device 250,
for example, when the data request to the content source has
yielded same results to be returned to the mobile device. In
general, the local proxy 275 can simulate application server
responses for applications on the device 250, using locally
cached content. This can prevent utilization of the cellular
network for transactions where new/changed data is not avail-
able, thus freeing up network resources and preventing net-
work congestion.

In one embodiment, the local proxy 275 includes an appli-
cation behavior detector 236 to track, detect, observe, and/or
monitor applications (e.g., proxy-aware and/or unaware
applications 210 and 220) accessed or installed on the device
250. Application behaviors or patterns in detected behaviors
(e.g., via the pattern detector 237) of one or more applications
accessed on the device 250 can be used by the local proxy 275
to optimize traffic in a wireless network needed to satisfy the
data needs of these applications.

For example, based on detected behavior of multiple appli-
cations, the traffic shaping engine 255 can align content
requests made by at least some of the applications over the
network (wireless network) (e.g., via the alignment module
256). The alignment module 256 can delay or expedite some
earlier received requests to achieve alignment. When requests
are aligned, the traffic shaping engine 255 can utilize the
connection manager to poll over the network to satisfy appli-
cation data requests. Content requests for multiple applica-
tions can be aligned based on behavior patterns or rules/
settings including, for example, content types requested by
the multiple applications (audio, video, text, etc.), device
(e.g., mobile or wireless device) parameters, and/or network
parameters/traffic conditions, network service provider con-
straints/specifications, etc.

In one embodiment, the pattern detector 237 can detect
recurrences in application requests made by the multiple
applications, for example, by tracking patterns in application
behavior. A tracked pattern can include, detecting that certain
applications, as a background process, poll an application
server regularly, at certain times of day, on certain days of the
week, periodically in a predictable fashion, with a certain
frequency, with a certain frequency in response to a certain
type of event, in response to a certain type user query, fre-
quency that requested content is the same, frequency with
which a same request is made, interval between requests,
applications making a request, or any combination of the
above, for example.

Such recurrences can be used by traffic shaping engine 255
to offload polling of content from a content source (e.g., from
an application server/content provider 110 of FIG. 1B) that
would result from the application requests that would be
performed at the mobile device or wireless device 250 to be
performed instead by a proxy server (e.g., proxy server 125 of
FIG. 1C) remote from the device 250. Traffic shaping engine
255 can decide to offload the polling when the recurrences
match a rule. For example, there are multiple occurrences or
requests for the same resource that have exactly the same
content, or returned value, or based on detection of repeatable
time periods between requests and responses such as a
resource that is requested at specific times during the day. The
offloading of the polling can decrease the amount of band-
width consumption needed by the mobile device 250 to estab-

US 9,271,325 B2

27

lish a wireless (cellular or other wireless broadband) connec-
tion with the content source for repetitive content polls.

As a result of the offloading of the polling, locally cached
content stored in the local cache 285 can be provided to
satisfy data requests at the device 250 when content change is
not detected in the polling of the content sources. As such,
when data has not changed, application data needs can be
satisfied without needing to enable radio use or occupying
cellular bandwidth in a wireless network. When data has
changed and/or new data has been received, the remote entity
(e.g., the host server) to which polling is offloaded, can notity
the device 250.

In one embodiment, the local proxy 275 can mitigate the
need/use of periodic keepalive messages (heartbeat mes-
sages) to maintain TCP/IP connections, which can consume
significant amounts of power thus having detrimental impacts
on mobile device battery life. The connection manager 265 in
the local proxy (e.g., via the heartbeat manager 267, the
keepalive detector 305 and/or the keepalive optimizer 300)
can detect, identify, and intercept any or all heartbeat (kee-
palive) messages being sent from applications.

The heartbeat manager 267 can prevent any or all of these
heartbeat messages from being sent over the cellular, or other
network, and instead rely on the server component of the
distributed proxy system (e.g., shown in FIG. 1C) to generate
and send the heartbeat messages to maintain a connection
with the backend (e.g., application server/provider 110 in the
example of FIG. 1B).

In some embodiments, the radio state management engine
203 can perform the management and/or policy management
of mobile device radio state promotion or demotion based on
buffer, activity and/or device state monitoring. The radio state
management engine 203 can determine what user activity
and/or data activity should justify a radio state promotion and
communicate the information to the network to be imple-
mented as a single session, multi-session, or global policy.
This policy can be used to execute the appropriate level of
throttling to prevent the radio from going to higher powered
states when unjustified based on dynamic conditions (e.g.,
network status, traffic, congestion, user expectations, user
behavior, other activity, and the like).

The local proxy 275 generally represents any one or a
portion of the functions described for the individual manag-
ers, modules, and/or engines. The local proxy 275 and device
250 can include additional or less components; more or less
functions can be included, in whole or in part, without devi-
ating from the novel art of the disclosure.

FIG. 2B depicts a block diagram illustrating additional
components in the local proxy shown in the example of FIG.
2A.

One embodiment of the local proxy 175 includes the user
activity module 215, which further includes one or more of; a
user activity detector/tracker 215a, a user activity prediction
engine 2155, and/or a user expectation manager 215¢. The
application behavior detector 236 can further include a pri-
oritization engine 241a, a time criticality detection engine
2415, an application state categorizer 241¢, and/or an appli-
cation traffic categorizer 241d. The local proxy 175 can fur-
ther include a backlight detector 219.

In one embodiment, the application behavior detector 236
may detect, determine, identify, or infer the activity state of an
application on the mobile device 250 from which traffic has
originated or is directed to, for example, via the application
state categorizer 241¢ and/or the application traffic catego-
rizer 241d. The activity state can be determined based on
whether the application is in a foreground or background state
on the mobile device (via the application state categorizer

10

15

20

25

30

35

40

45

50

55

60

65

28

241c¢) since the traffic for a foreground application versus a
background application may be handled differently.

In one embodiment, the activity state can be determined,
detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status of the mobile device
250 (e.g., by the backlight detector 219) or other software
agents or hardware sensors on the mobile device, including
but not limited to, resistive sensors, capacitive sensors, ambi-
ent light sensors, motion sensors, touch sensors, and the like.
In general, if the backlight is on, the traffic can be treated as
being or determined to be generated from an application that
is active or in the foreground, or the traffic is interactive. In
addition, if the backlight is on, the traffic can be treated as
being or determined to be traffic from user interaction or user
activity, or traffic containing data that the user is expecting
within some time frame.

In one embodiment, the activity state is determined based
on whether the traffic is interactive traffic or maintenance
traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/
interaction with an application, and can include content or
data that a user is waiting or expecting to receive. Mainte-
nance traffic may be used to support the functionality of an
application which is not directly detected by a user. Mainte-
nance traffic can also include actions or transactions that may
take place in response to a user action, but the user is not
actively waiting for or expecting a response.

For example, a mail or message delete action at a mobile
device 250 generates a request to delete the corresponding
mail or message at the server, but the user typically is not
waiting for a response. Thus, such a request may be catego-
rized as maintenance traffic, or traffic having a lower priority
(e.g., by the prioritization engine 241a) and/or is not time-
critical (e.g., by the time criticality detection engine 2415).

Contrastingly, a mail ‘read’ or message ‘read’ request ini-
tiated by a user at the mobile device 250, can be categorized
as ‘interactive traffic’ since the user generally is waiting to
access content or data when they request to read a message or
mail. Similarly, such a request can be categorized as having
higher priority (e.g., by the prioritization engine 241a) and/or
as being time critical/time sensitive (e.g., by the time critical-
ity detection engine 2415).

The time criticality detection engine 2415 can generally
determine, identify, infer the time sensitivity of data con-
tained in traffic sent from the mobile device 250 or to the
mobile device from a host server (e.g., host 300) or applica-
tion server (e.g., app server/content source 110). For example,
time sensitive data can include, status updates, stock infor-
mation updates, IM presence information, email messages or
other messages, actions generated from mobile gaming appli-
cations, webpage requests, location updates, etc. Data that is
not time sensitive or time critical, by nature of the content or
request, can include requests to delete messages, mark-as-
read or edited actions, application-specific actions such as an
add-friend or delete-friend request, certain types of messages,
or other information which does not frequently change in
nature, etc. In some instances when the data is not time
critical, the timing with which to allow the traffic to pass
through is set based on when additional data needs to be sent
from the mobile device 250. For example, traffic shaping
engine 255 can align the traffic with one or more subsequent
transactions to be sent together in a single power-on event of
the mobile device radio (e.g., using the alignment module 256
and/or the batching module 257). The alignment module 256
can also align polling requests occurring close in time
directed to the same host server, since these requests are likely
to be responded to with the same data. In some instances, the

US 9,271,325 B2

29

timing for withholding or delaying traffic and timing for
allowing any delayed or new traffic to the network can be
based on traffic management policies.

In the alternate or in combination, the activity state can be
determined from assessing, determining, evaluating, infer-
ring, identifying user activity at the mobile device 250 (e.g.,
via the user activity module 215). For example, user activity
can be directly detected and tracked using the user activity
tracker 215a. The traffic resulting therefrom can then be cat-
egorized appropriately for subsequent processing to deter-
mine the policy for handling. Furthermore, user activity can
be predicted or anticipated by the user activity prediction
engine 215b. By predicting user activity or anticipating user
activity, the traffic thus occurring after the prediction can be
treated as resulting from user activity and categorized appro-
priately to determine the transmission policy.

In addition, the user activity module 215 can also manage
user expectations (e.g., via the user expectation manager 215¢
and/or in conjunction with the activity tracker 2154 and/or the
prediction engine 215b) to ensure that traffic is categorized
appropriately such that user expectations are generally met.
For example, a user-initiated action should be analyzed (e.g.,
by the expectation manager 215¢) to determine or infer
whether the user would be waiting for a response. If so, such
traffic should be handled under a policy such that the user
does not experience an unpleasant delay in receiving such a
response or action.

In one embodiment, an advanced generation wireless stan-
dard network is selected for use in sending traffic between a
mobile device and a host server in the wireless network based
onthe activity state of the application on the mobile device for
which traffic is originated from or directed to. An advanced
technology standard such as the 3G, 3.5G, 3G+, 4G, or LTE
network can be selected for handling traffic generated as a
result of user interaction, user activity, or traffic containing
data that the user is expecting or waiting for. Advanced gen-
eration wireless standard networks can also be selected to
transmit data contained in traffic directed to the mobile device
which responds to foreground activities.

In categorizing traffic and defining a transmission policy
for mobile traffic, a network configuration can be selected for
use (e.g., by a network configuration selection engine) on the
mobile device 250 in sending traffic between the mobile
device and a proxy server and/or an application server (e.g.,
app server/host 110). The network configuration that is
selected can be determined based on information gathered by
the application behavior module 236 regarding application
activity state (e.g., background or foreground traffic), appli-
cation traffic category (e.g., interactive or maintenance traf-
fic), any priorities of the data/content, time sensitivity/criti-
cality.

In one embodiment, the keepalive detector 305 which is
described in detail with respect to FIG. 3 can also detect or
identify keepalives or heartbeat messages and the keepalive
optimizer 300 can use the information to reduce or block
keepalive and other background traffic in the mobile network

FIG. 2C depicts a block diagram illustrating additional
components in the proprietary/non-standard protocol adapta-
tion engine shown in the example of FIG. 2A. In one embodi-
ment, the proprietary/non-standard protocol adaptation
engine 270 can be a part of the local proxy 275. Alternately,
the proprietary/non-standard protocol adaptation engine 270
can be implemented separately outside of the local proxy 275.

The proprietary/non-standard protocol adaptation engine
270 can include, for example, a transaction detection engine
272 having a protocol analyzer 274, a transaction pattern
detection engine 276, a binary matching and normalization

10

15

20

25

30

35

40

45

50

55

60

65

30

engine 278, an application byte stream generator 280, a TCP
session manager 282 and/or a protocol encoding/decoding
module 284. Additional or less modules/engines can be
included. The various components of the proprietary/non-
standard protocol adaptation engine 401 on the mobile device
or user equipment (UE) 250 can singularly or in any combi-
nation perform the following functions and features related to
signaling optimization in a wireless network for traffic utiliz-
ing proprietary and nonproprietary protocols.

In one embodiment, the local proxy 275 or the proprietary/
non-standard protocol adaptation engine 401 captures the
TCP stream from an application and passes it on as a byte
stream via a byte stream interface provided by the application
byte stream generator 280. A byte stream can be read from or
can be written to by an application or client without having to
account for protocol-specific formatting, sizing, and other
details.

The TCP session manager 282 can, in one embodiment,
manage TCP sessions including establishing of TCP sessions
with a proxy server (e.g., proxy server 125) and/or the content
server (e.g., content server 110) and tearing down or termi-
nation of TCP sessions. Although the discussion is with
respect to TCP sessions, other similar or session-based pro-
tocols may be implemented. In one implementation, the TCP
session manager 282 can establish a first TCP session
between an application and the local proxy 275 or the propri-
etary/non-standard protocol adaptation engine 270. The TCP
session manager 282 can also establish a TCP session
between the local proxy 275 (or the proprietary/non-standard
protocol adaptation engine 270) and a server (e.g., proxy
server 125, an application or content server 110). Byte
streams from the application can be passed over the first TCP
session to the keepalive detector 305 and/or the keepalive
optimizer 300, which can then be sent over to the server over
the second TCP session. The TCP session manager 282 may
also allow the application to establish the necessary hand-
shakes.

In one embodiment, the transaction detection engine 272
can detect and identify transactions based on analysis of the
protocol headers and other protocol peculiarities. Such pro-
tocol specific analysis can be performed by a protocol ana-
lyzer 274. For example, the protocol analyzer 274 can detect
transactions in HTTP protocol based on HTTP header, for-
matting, encoding, and the like.

In another embodiment, the transaction detection engine
272 can be protocol agnostic, and can detect and/or identify
transactions without knowing or understanding details of the
underlying protocols. For example, the transaction detection
engine 272 can directly monitor byte streams captured from
applications (e.g., by the application byte stream generator
280 interface) and detect and/or identify transactions based
on observed and/or extracted patterns of byte streams and/or
matching or determining content in byte streams. In one
implementation, for example, the transaction pattern detec-
tion engine 276 can monitor, detect and/or extract various
patterns embedded in byte streams corresponding to transac-
tions from applications. One such pattern can be idle time
between transactions. The pattern detection engine 276 can
monitor byte streams from an application over time, and
detect an idle time of two minutes occurring in between
transactions, without knowing or understanding the details of
the protocol used by the application. Other patterns that can
be identified or extracted can resemble those identified by the
distributed proxy system (e.g., the local proxy 275 and/or the
proxy server 125) for HTTP or other standard protocols.

In one embodiment, the proprietary/non-standard protocol
adaptation engine 401 can include a protocol encoding/de-

US 9,271,325 B2

31

coding module 284. In implementations where a binary
stream is encapsulated within a security and/or encryption
protocol such as Transport Layer Security (TLS), Secure
Sockets Layer (SSL), and the like, the encoding/decoding
module may include capabilities for decoding such protocols
to extract the binary stream.

FIG. 3 depicts a block diagram illustrating additional com-
ponents in the keepalive detector 305 shown in the example of
FIG. 2A. In some embodiments, the keepalive detector 305
can include a network log data analyzer 310 having a regular
keepalive interval detector 315 and a regular keepalive byte
size detector 315 and a keepalive reporter 335. In some other
embodiments, the keepalive detector 305 can include a con-
nection analyzer 320 having a connection object creator/
updator module 325 and a connection object mapping module
330 and a keepalive reporter 335. In yet other embodiments,
the keepalive detector can include the network log data ana-
lyzer 310, the connection analyzer 320 and the keepalive
reporter 335.

The network log data analyzer 310 can examine patterns of
data sent from and received by a mobile application on a
mobile device. Such patterns of data sent from and received
by the mobile application can have variable intervals and
sizes which introduce ambiguities regarding whether such
data are related to keepalives or not. In order to remove the
ambiguities, the network log data analyzer 310 can use the
regular keepalive interval detector 315 and the regular kee-
palive byte size detector 318 to perform statistical analyses on
the patterns of data sent from and received by the mobile
application to detect a pattern that is regular and to detect
regular byte sizes respectively. The network log data analyzer
310 can then identify the keepalives from the TCP stream
occurring over the same TCP session based on information
relating to the pattern that is detected as regular and the
regular byte sizes.

In some embodiments, the regular keepalive interval detec-
tor 315 can detect the pattern as regular when (1) the pattern
occurs more than a minimum number of times during a dura-
tion (e.g., more than 5 times an hour); (2) intervals between
occurrences of the pattern is distributed such that a difference
between an interval in a first quartile and an interval in a third
quartile is within a threshold percentage of a median of the
intervals or a variance of intervals between a threshold num-
ber of sequential occurrences of the pattern is less than a
maximum threshold as determined by the regular keepalive
interval detector 315; and (3) the pattern’s median of the
intervals is greater than a minimum threshold. In some
embodiments, all three conditions need not be satisfied for the
pattern to be detected as regular.

The regular keepalive byte size detector 318 can detect the
regular byte sizes when when patterns including same sizes of
data sent from and received by the mobile application, same
sizes of data sent from the mobile application or same sizes of
data received by the mobile application are detected as regu-
lar. In further embodiments, the regular byte size can be
detected by the detector 318 by performing a cluster analysis
to identity patterns including data sent from and received by
the mobile application, data sent from the mobile application
or data received by the mobile application having a variance
in sizes that is less than a threshold that are detected as regular.
The logic flow diagrams of FIGS. 5-8 describe various
aspects of the network log data analyzer 310 and its compo-
nents.

The connection analyzer 320 can, in some embodiments,
detect keepalives or network transactions from stream data on
a mobile device. The connection analyzer 320 can detect a
message including stream data for a socket. Based on infor-

10

15

20

25

30

35

40

45

50

55

60

65

32

mation in the message, the connection object creator/updator
325 can determine whether to create or update a connection
object. For example, the connection object creator/updator
325 can analyze the message to determine time the socket was
created and create the connection object when the socket was
created was more than an amount of given time ago. Simi-
larly, the connection object creator/updator 325 can analyze
the message to determine the information including an
amount of data transferred from a client to a server and from
the server to the client and timing characteristics and update
the connection object when the amount of data transferred is
less than a threshold amount and the timing characteristics
indicates that a time interval since the last data transfer event
occurred more than a threshold interval.

The connection object is associated with a data structure
that includes an identifier for the connection object, time the
socket was created, a keepalive weight that is initialized to a
value on creation of the connection object and incremented
each time the connection object is updated, a flag for indicat-
ing whether the keepalive was detected and a flag indicating
whether the message contains a keepalive. The connection
object including the associated data structure can be stored in
the local cache 340 or the persistent local storage 345. The
connection object creator/updator 325 can further evaluate
the connection object to determine whether a keepalive is
detected and update the corresponding flag in the keepalive
data structure. The evaluation can include evaluating the kee-
palive weight of the connection object upon updating the
connection object to determine whether the keepalive weight
is higher than a threshold.

The keepalive reporter 335 can report changes to the con-
nection object including a formatted form of the data struc-
ture to the server.

In some embodiments, the keepalive detector 305 caniden-
tify network transactions (e.g., keepalives) from a Transport
Control Protocol (TCP) stream by obtaining one or more
network transaction parameters determined from examina-
tion of patterns of data sent from and received by a mobile
application on a mobile device and identitying the network
transactions from the TCP stream based on the one or more
network transaction parameters. The network transactions
occur over the same TCP session and are proxy streamed. In
some embodiments, the one or more network transaction
parameters include a regular interval, a regular size threshold
that is determined from the patterns of data sent from and
received by the mobile application based on statistical analy-
sis, similar or repeating content within the patterns of data
sent from and received by the mobile application, content
following a certain pattern or a combination thereof. The
repeating content in the network transactions can have parts
or portions that are the same or can have some portions that
follow a pattern (e.g., a counter or incrementing or decre-
menting pattern, time stamp). In some embodiments, the
patterns of data sent from and received by the mobile appli-
cation are recorded in a network communication log along
with patterns of data sent from and received by other mobile
applications on the mobile device. The network transaction
parameters can be determined locally on the mobile device
(e.g., viathe network log data analyzer 310) or remotely on a
proxy server (e.g., via the network log data analyzer 430).

FIG. 4A depicts a block diagram illustrating an example of
server-side components in a distributed proxy and cache sys-
tem, further including a keepalive detector that can identify
keepalives from a TCP stream and a proprietary/non-standard
protocol adaptation engine. In some embodiments, the
server-side proxy (or proxy server 125) can further categorize
mobile traffic and/or deploy and/or implement policies such

US 9,271,325 B2

33

as traffic management and delivery policies based on device
state, application behavior, content priority, user activity, and/
or user expectations.

The host server 400 generally includes, for example, a
network interface 408 and/or one or more repositories 412,
414, and 416. Note that server 400 may be any portable/
mobile or non-portable device, server, cluster of computers
and/or other types of processing units (e.g., any number of a
machine shown in the example of FIG. 1B) able to receive or
transmit signals to satisfy data requests over a network
including any wired or wireless networks (e.g., Wi-Fi, cellu-
lar, Bluetooth, etc.).

The network interface 408 can include networking module
(s) or devices(s) that enable the server 400 to mediate data in
anetwork with an entity that is external to the host server 400,
through any known and/or convenient communications pro-
tocol supported by the host and the external entity. Specifi-
cally, the network interface 408 allows the server 400 to
communicate with multiple devices including mobile phone
devices 450 and/or one or more application servers/content
providers 410.

The host server 400 can store information about connec-
tions (e.g., network characteristics, conditions, types of con-
nections, etc.) with devices in the connection metadata
repository 412. Additionally, any information about third-
party applications or content providers can also be stored in
the repository 412. The host server 400 can store information
about devices (e.g., hardware capability, properties, device
settings, device language, network capability, manufacturer,
device model, OS, OS version, etc.) in the device information
repository 414. Additionally, the host server 400 can store
information about network providers and the various network
service areas in the network service provider repository 416.

The communication enabled by network interface 408
allows for simultaneous connections (e.g., including cellular
connections) with devices 450 and/or connections (e.g.,
including wired/wireless, HTTP, Internet connections, LAN,
WiF1i, etc.) with content servers/providers 410 to manage the
traffic between devices 450 and content providers 410, for
optimizing network resource utilization and/or to conserver
power (battery) consumption on the serviced devices 450.
The host server 400 can communicate with mobile devices
450 serviced by different network service providers and/or in
the same/different network service areas. The host server 400
can operate and is compatible with devices 450 with varying
types or levels of mobile capabilities, including by way of
example but not limitation, 1G, 2G, 2G transitional (2.5G,
2.75G), 3G (IMT-2000), 3G transitional (3.5G, 3.75G, 3.9G),
5G (IMT-advanced), etc.

In general, the network interface 408 can include one or
more of a network adaptor card, a wireless network interface
card (e.g., SMS interface, WiFi interface, interfaces for vari-
ous generations of mobile communication standards includ-
ing but not limited to 1G, 2G, 3G, 3.5G, 5G type networks
such as LTE, WiIMAX, etc.), Bluetooth, WiFi, or any other
network whether or not connected via a router, an access
point, a wireless router, a switch, a multilayer switch, a pro-
tocol converter, a gateway, a bridge, a bridge router, a hub, a
digital media receiver, and/or a repeater.

The host server 400 can further include server-side com-
ponents of the distributed proxy and cache system which can
include a proxy server 125 and a server cache 435. In some
embodiments, the proxy server 125 can include an HTTP
access engine 445, a caching policy manager 455, a proxy
controller 465, a traffic shaping engine 475, a new data detec-
tor 447 and/or a connection manager 495.

10

15

20

25

30

35

40

45

50

55

60

65

34

The HTTP access engine 445 may further include a heart-
beat manager 498; the proxy controller 465 may further
include a data invalidator module 468; the traffic shaping
engine 475 may further include a control protocol 476 and a
batching module 477. Additional or less components/mod-
ules/engines can be included in the proxy server 125 and each
illustrated component.

In the example of a device (e.g., mobile device 450) mak-
ing an application or content request to an application server
or content provider 410, the request may be intercepted and
routed to the proxy server 125 which is coupled to the device
450 and the application server/content provider 410. Specifi-
cally, the proxy server is able to communicate with the local
proxy (e.g., proxy 175 of the examples of FIG. 1C) of the
mobile device 450, the local proxy forwards the data request
to the proxy server 125 in some instances for further process-
ing and, if needed, for transmission to the application server/
content server 410 for a response to the data request.

In such a configuration, the host 400, or the proxy server
125 in the host server 400 can utilize intelligent information
provided by the local proxy in adjusting its communication
with the device in such a manner that optimizes use of net-
work and device resources. For example, the proxy server 125
can identify characteristics of user activity on the device 450
to modify its communication frequency. The characteristics
of user activity can be determined by, for example, the activ-
ity/behavior awareness module 466 in the proxy controller
465 via information collected by the local proxy on the device
450.

In some embodiments, communication frequency can be
controlled by the connection manager 495 of the proxy server
125, for example, to adjust push frequency of content or
updates to the device 450. For instance, push frequency can be
decreased by the connection manager 495 when characteris-
tics of the user activity indicate that the user is inactive. In
some embodiments, when the characteristics of the user
activity indicate that the user is subsequently active after a
period of inactivity, the connection manager 495 can adjust
the communication frequency with the device 450 to send
data that was buffered as a result of decreased communication
frequency to the device 450.

In addition, the proxy server 125 includes priority aware-
ness of various requests, transactions, sessions, applications,
and/or specific events. Such awareness can be determined by
the local proxy on the device 450 and provided to the proxy
server 125. The priority awareness module 467 of the proxy
server 125 can generally assess the priority (e.g., including
time-criticality, time-sensitivity, etc.) of various events or
applications; additionally, the priority awareness module 467
can track priorities determined by local proxies of devices
450.

In some embodiments, through priority awareness, the
connection manager 495 can further modify communication
frequency (e.g., use or radio as controlled by the radio con-
troller 496, Internet/ Wi-Fi Controller 497) of the server 400
with the devices 450. For example, the server 400 can notify
the device 450, thus requesting use of the radio if it is not
already in use when data or updates of an importance/priority
level which meets a criteria becomes available to be sent.

In some embodiments, the proxy server 125 can detect
multiple occurrences of events (e.g., transactions, content,
data received from server/provider 410) and allow the events
to accumulate for batch transfer to device 450. Batch transfer
can be cumulated and transfer of events can be delayed based
on priority awareness and/or user activity/application behav-
ior awareness as tracked by modules 467 and/or 466. For
example, batch transfer of multiple events (of a lower prior-

US 9,271,325 B2

35

ity) to the device 450 can be initiated by the batching module
477 when an event of a higher priority (meeting a threshold or
criteria) is detected at the server 400. In addition, batch trans-
fer from the server 400 can be triggered when the server
receives data from the device 450, indicating that the device
radio is already in use and is thus on. In some embodiments,
the proxy server 125 can order the each messages/packets in
a batch for transmission based on event/transaction priority
such that higher priority content can be sent first in case
connection is lost or the battery dies, etc.

In some embodiments, the server 400 caches data (e.g., as
managed by the caching policy manager 455) such that com-
munication frequency over a network (e.g., cellular network)
with the device 450 can be modified (e.g., decreased). The
data can be cached, for example, in the server cache 435 for
subsequent retrieval or batch sending to the device 450 to
potentially decrease the need to turn on the device 450 radio.
The server cache 435 can be partially or wholly internal to the
host server 400, although in the example of FIG. 4 it is shown
as being external to the host 400. In some instances, the server
cache 435 may be the same as and/or integrated in part or in
whole with another cache managed by another entity (e.g., the
optional caching proxy server 199 shown in the example of
FIG. 1C), such as being managed by an application server/
content provider 410, a network service provider, or another
third party.

In some embodiments, content caching is performed
locally on the device 450 with the assistance of host server
400. For example, proxy server 125 in the host server 400 can
query the application server/provider 410 with requests and
monitor changes in responses. When changed or new
responses are detected (e.g., by the new data detector 447),
the proxy server 125 can notify the mobile device 450 such
that the local proxy on the device 450 can make the decision
to invalidate (e.g., indicated as outdated) the relevant cache
entries stored as any responses in its local cache. Alterna-
tively, the data invalidator module 468 can automatically
instruct the local proxy of the device 450 to invalidate certain
cached data, based on received responses from the applica-
tion server/provider 410. The cached data is marked as
invalid, and can get replaced or deleted when new content is
received from the content server 410.

Note that data change can be detected by the detector 447
in one or more ways. For example, the server/provider 410
can notify the host server 400 upon a change. The change can
also be detected at the host server 400 in response to a direct
poll of the source server/provider 410. In some instances, the
proxy server 125 can, in addition, pre-load the local cache on
the device 450 with the new/updated data. This can be per-
formed when the host server 400 detects that the radio on the
mobile device is already in use, or when the server 400 has
additional content/data to be sent to the device 450.

One or more the above mechanisms can be implemented
simultaneously or adjusted/configured based on application
(e.g., different policies for different servers/providers 410). In
some instances, the source provider/server 410 may notify the
host 400 for certain types of events (e.g., events meeting a
priority threshold level). In addition, the provider/server 410
may be configured to notify the host 400 at specific time
intervals, regardless of event priority.

In some embodiments, the proxy server 125 of the host 400
can monitor/track responses received for the data request
from the content source for changed results prior to returning
the result to the mobile device; such monitoring may be
suitable when data request to the content source has yielded
same results to be returned to the mobile device, thus prevent-
ing network/power consumption from being used when no

10

15

20

25

30

35

40

45

50

55

60

65

36

new changes are made to a particular requested. The local
proxy of the device 450 can instruct the proxy server 125 to
perform such monitoring or the proxy server 125 can auto-
matically initiate such a process upon receiving a certain
number of the same responses (e.g., or a number of the same
responses in a period of time) for a particular request.

In some embodiments, the server 400, through the activity/
behavior awareness module 466, is able to identify or detect
user activity at a device that is separate from the mobile
device 450. For example, the module 466 may detect that a
user’s message inbox (e.g., email or types of inbox) is being
accessed. This can indicate that the user is interacting with
his/her application using a device other than the mobile
device 450 and may not need frequent updates, if at all.

The server 400, in this instance, can thus decrease the
frequency with which new or updated content is sent to the
mobile device 450, or eliminate all communication for as
long as the user is detected to be using another device for
access. Such frequency decrease may be application specific
(e.g., for the application with which the user is interacting on
another device), or it may be a general frequency decrease
(e.g., since the user is detected to be interacting with one
server or one application via another device, he/she could also
use it to access other services) to the mobile device 450.

In some embodiments, the host server 400 is able to poll
content sources 410 on behalf of devices 450 to conserve
power or battery consumption on devices 450. For example,
certain applications on the mobile device 450 can poll its
respective server 410 in a predictable recurring fashion. Such
recurrence or other types of application behaviors can be
tracked by the activity/behavior module 466 in the proxy
controller 465. The host server 400 can thus poll content
sources 410 for applications on the mobile device 450 that
would otherwise be performed by the device 450 through a
wireless (e.g., including cellular connectivity). The host
server can poll the sources 410 for new or changed data by
way of the HTTP access engine 445 to establish HTTP con-
nection or by way of radio controller 496 to connect to the
source 410 over the cellular network. When new or changed
data is detected, the new data detector 447 can notify the
device 450 that such data is available and/or provide the
new/changed data to the device 450.

In some embodiments, the connection manager 495 deter-
mines that the mobile device 450 is unavailable (e.g., the
radio is turned off) and utilizes SMS to transmit content to the
device 450, for instance, via the SMSC 162 shown in the
example of FIG. 1C. SMS is used to transmit invalidation
messages, batches of invalidation messages, or even content
in the case where the content is small enough to fit into just a
few (usually one or two) SMS messages. This avoids the need
to access the radio channel to send overhead information. The
host server 400 can use SMS for certain transactions or
responses having a priority level above a threshold or other-
wise meeting a criteria. The server 400 can also utilize SMS
as an out-of-band trigger to maintain or wake-up an IP con-
nection as an alternative to maintaining an always-on IP con-
nection.

In some embodiments, the connection manager 495 in the
proxy server 125 (e.g., the heartbeat manager 498) can gen-
erate and/or transmit heartbeat messages on behalf of con-
nected devices 450 to maintain a backend connection with a
provider 410 for applications running on devices 450.

For example, in the distributed proxy system, local cache
on the device 450 can prevent any or all heartbeat messages
needed to maintain TCP/IP connections required for applica-
tions from being sent over the cellular, or other, network and
instead rely on the proxy server 125 on the host server 400 to

US 9,271,325 B2

37

generate and/or send the heartbeat messages to maintain a
connection with the backend (e.g., application server/pro-
vider 110 in the example of FIG. 1B). The proxy server can
generate the keepalive (heartbeat) messages independent of
the operations of the local proxy on the mobile device.

The repositories 412, 414, and/or 416 can additionally
store software, descriptive data, images, system information,
drivers, and/or any other data item utilized by other compo-
nents of the host server 400 and/or any other servers for
operation. The repositories may be managed by a database
management system (DBMS), for example, which may be but
is not limited to Oracle, DB2, Microsoft Access, Microsoft
SQL Server, PostgreSQL, MySQL, FileMaker, etc.

The repositories can be implemented via object-oriented
technology and/or via text files and can be managed by a
distributed database management system, an object-oriented
database management system (OODBMS) (e.g., Concept-
Base, FastDB Main Memory Database Management System,
JDOlnstruments, ObjectDB, etc.), an object-relational data-
base management system (ORDBMS) (e.g., Informix, Open-
Link Virtuoso, VMDS, etc.), a file system, and/or any other
convenient or known database management package.

In one embodiment, the keepalive or heartbeat manager
490 can determine whether to continue or disconnect the TCP
session with the content server to allow the content server to
determine the correct status of the user/mobile device based
the keepalives received or not received from the local proxy
175 or the mobile device. For example, if the keepalive man-
ager 490 receives no keepalive when expected, the keepalive
manager can terminate the session with the content server to
enable the content server to determine the correct status of the
user/mobile device.

In some embodiments, the proxy server 125 includes a
keepalive detector 405 and/or a proprietary/non-standard
protocol adaptation engine 470. FIG. 4B depicts a block
diagram illustrating additional components in the keepalive
detector shown in the example of FIG. 4A. The keepalive
detector 405 can include a network log data analyzer 430
having a regular keepalive interval detector 432 and a regular
keepalive byte size detector 434. These modules can perform
same/similar functions as the corresponding modules
described in reference to FIG. 3. The keepalive detector 405
can also include a keepalive parameters module 436 which
can maintain keepalive parameters such as regular interval
and byte sizes for mobile applications. These keepalive
parameters can then be pushed to mobile devices for assis-
tance in detecting keepalives or other network transactions.

FIG. 4C depicts a block diagram illustrating additional
components in the proprietary/non-standard protocol adapta-
tion engine shown in the example of FIG. 4A.

Referring to FIG. 3B, the proprietary/non-standard proto-
col adaptation engine 470 can include, for example, a trans-
action detection engine 471 having a protocol analyzer 472,
transaction pattern detection engine 473 and a binary match-
ing and normalization engine 474, an application byte stream
generator 480, a session manager 482, and/or a protocol
encoding/decoding module 484. Additional or less modules/
engines can be included.

The various components of the proprietary/non-standard
protocol adaptation engine 470 on the remote proxy or proxy
server 125 can singularly or in any combination perform the
above described functions and features related to signaling
optimization in a wireless network for traffic utilizing propri-
etary and non-proprietary protocols. The various components
of the proprietary/non-standard protocol adaptation engine
470 can also alone or in combination perform the above
described functions with the mobile device or user equipment

5

10

15

20

25

30

35

40

45

50

55

60

65

38

(UE) side component (e.g., the local proxy 275 and/or the
proprietary/non-standard protocol adaptation engine 270
related to optimize signaling in a wireless network for traffic
utilizing proprietary (non-standard) and non-proprietary
(standard) protocols.

In one embodiment, many of the example components of
the proprietary/non-standard protocol adaptation engine 470
on the proxy server can perform similar/same functions as the
example components of the proprietary/non-standard proto-
col adaptation engine 270 on the local proxy. For example, the
engine 470 can capture data for an application received from
the content server. In one implementation, the application
byte stream generator 480 can also provide a similar byte
stream interface to capture data stream from the content
server without having to understand the details of the protocol
used.

The session manager 482 can, in one embodiment, manage
TCP session including establishing of TCP sessions with the
content server and the local proxy and tearing down of TCP
sessions. Although the discussion is with respect to TCP,
other similar or session based protocols may be implemented.
Byte streams from the content server can be passed overto the
local proxy via the TCP sessions. The session manager 482
may also coordinate the establishment of necessary hand-
shakes between the application and the content server.

In one embodiment, the transaction detection engine 473
can detect and identify transactions based on analysis of the
protocol headers and other protocol peculiarities. Such pro-
tocol specific analysis can be performed by a protocol ana-
lyzer 472. For example, the protocol analyzer 472 can detect
transactions in HTTP protocol based on HT'TP header. In
another embodiment, the transaction detection engine 471
can be protocol agnostic, and can detect and/or identify trans-
actions without knowing or understanding the underlying
protocols. For example, the transaction detection engine 471
can detect and/or identify transactions based on observed
and/or extracted patterns and/or content matching. In one
implementation, for example, a pattern detection engine 473
can detect and/or extract various patterns or change in pat-
terns embedded in byte streams corresponding to transactions
from applications and/or client server. One such pattern can
be idle time between transactions. The pattern detection
engine can monitor byte streams from an application/client
server over time, and detect an idle time of two minutes
occurring in between transactions. The detection can occur
without any protocol-specific understanding of the binary
stream comprising the transaction. Various other patterns as
described with respect to the proprietary/non-standard proto-
col adaptation engine 401 can be identified or extracted.

In one embodiment, the binary matching and normaliza-
tion engine 474 can analyze content in byte streams to deter-
mine content similarity. The content similarity can be estab-
lished by exact or fuzzy binary matches and binary-level
normalizations can be applied to accommodate protocol-
specificities, when determined. The transaction pattern detec-
tion engine 473 can also detect any change in the transaction
pattern by using binary matching and normalization engine
474 in some embodiments. In one implementation, content of
a byte stream from an application can be matched with con-
tent of byte stream corresponding to the identified pattern to
determine whether the two contents are the same, similar, or
approximately the same (e.g., same content but with different
time stamp, increment factor, a random portion, etc.). Based
on the result of the comparison, the transaction pattern detec-
tion engine 473 can determine whether there is a change in the
pattern, and if so, the engine can alert or signal the session
manager 482 to establish or re-establish a session with the

US 9,271,325 B2

39

local proxy to deliver the changed content received from the
content server to the application via the local proxy.

In one embodiment, the proprietary/non-standard protocol
adaptation engine 470 can include a protocol encoding/de-
coding module 484. In implementations where a binary
stream is encapsulated within a security and/or encryption
protocol such as Transport Layer Security (TLS), Secure
Sockets Layer (SSL), and the like, the encoding/decoding
module may include capabilities for decoding such protocols
to extract the binary stream.

FIG. 5 depicts a logic flow diagram illustrating an example
method 500 of analyzing socket level network communica-
tion log data using statistical analyses to identify regular
interval and regular byte sizes corresponding of keepalives
originating from an application. In the example method 500,
a keepalive detector (e.g., keepalive detector 305 or the kee-
palive detector 405) examines socket level network commu-
nication log data. The log data can include information relat-
ing to bytes sent and received by multiple different
applications or clients on a mobile device in some embodi-
ments. The log data is examined on a per application basis. At
block 510, the keepalive detector performs a statistical analy-
sis on the log data corresponding to an application to deter-
mine a regular interval for a pattern of data sent from and
received by that application. Referring to FIG. 6, an example
method 600 of performing the statistical analysis on the bytes
sent from and received by the application to determine a
regular keepalive interval is described.

Inthe example method 600, the keepalive detector (e.g., the
regular keepalive interval detector 432) examines the pattern
of data sent and received by the application at block 605. The
keepalive detector then determines if the pattern occurs more
than a threshold (x) number of times in a given duration (e.g.,
more than 15 times per day) at decision block 615. If false, no
regular interval can be detected and the method terminates at
block 630. The method can be rerun once more data is logged.
Iftrue, the keepalive detector determines whether the interval
time for the pattern is uniform at decision block 615. The
interval time can be considered to be uniform if the interval
times distributed close together. For example, if the 1% quar-
tile and 3" quartile difference is smaller than a median inter-
val threshold, the interval can be considered uniform. Alter-
nately, without looking at 1* or 3" quartiles, the pattern can
be considered uniform if the pattern contains a sequence of a
threshold number of bytes sent and received whose intervals’
variance is smaller than a threshold. For example, if the pat-
tern contains a sequence of 3 bytes sent and received and the
variance of the intervals between the bytes sent and received
is less than 0.1, the pattern is considered to be uniform. If the
pattern has no uniform interval time, the keepalive detector
can terminate the method at block 630 without detecting a
regular interval. Conversely, if the pattern has a uniform inter-
val time, then the keepalive detector can determine if the
median interval time for the pattern is greater than a threshold
amount of time at decision block 620. If false, no regular
interval can be detected and the method terminates at block
630. If true, a regular interval for the pattern is detected at
block 625.

Referring to FIG. 5, at block 515, the keepalive detector
performs statistical analysis on the log data corresponding to
the application to determine a regular byte size of keepalives
originating from that application. An example method of
performing the statistical analysis is described in detail in
FIG. 7. In the example method 700, the keepalive detector
(e.g., keepalive regular byte size detector) examines the pat-
tern of data sent and received at block 705. At decision block
710, the keepalive detector determines if the same sized data

10

15

20

25

30

35

40

45

50

55

60

65

40

is sent and received regularly (i.e., if the pattern comprises the
same sized data sent and received (e.g., 8 fromapp bytes and
10 fromnet bytes) at a “regular” interval as defined in the
example method of FIG. 6). If true, the byte sizes of the data
sent and received are detected as the regular byte sizes for the
pattern at block 765. If false, the keepalive detector deter-
mines if the same sized data is sent regularly (i.e., in regular
intervals as defined in the example method of FIG. 6) at
decision block 715. Ifthe same sized data is sent regularly, the
keepalive detector detects the byte size of the data sent as a
regular byte size for data sent at block 720. Conversely, if the
same sized data is not sent regularly, the keepalive detector
can determine if the same sized data is received regularly at
decision block 725. If true, the keepalive detector detects the
byte size of the data received as a regular byte size for
received data. at block 730. If false, the keepalive detector
applies a clustering algorithm to cluster similar sized data
sent and received in the pattern at block 735. The keepalive
detector then determines if the variance of the cluster of data
sent and received is less than a threshold and if the pattern is
aregular pattern (i.e., has a regular interval) at decision block
740. If true, the keepalive detector detects the pattern as
having regular byte sizes at block 765. If false, the keepalive
detector determines if the variance of the cluster of data sent
is less than a threshold and if the pattern is a regular pattern at
decision block 745. If true, the keepalive detector detects that
the regular byte sizes for the pattern at block 750. If false, the
keepalive detector again performs an analysis of the variance
of'the cluster of data received in the pattern to determine if the
variance is less than a threshold and if the pattern occurs
regularly at decision block 755. If true, the keepalive detector
detects a regular byte size pattern at block 730. If false, the
keepalive detector terminates the method at block 760 with-
out detecting a regular byte size pattern. Referring to FIG. 5,
the method 500 can store the regular byte sizes and regular
intervals as keepalive parameters in association with the
application such that the keepalive parameters can be used in
detecting keepalives.

For example, FI1G. 8 depicts a logic flow diagram illustrat-
ing an example method of monitoring a TCP stream of data
sent and received by the application and identifying kee-
palives from the TCP stream when the same TCP stream
includes regular byte sized data sent and received at regular
intervals. In the example method 800, the keepalive detector
monitors data sent from and/or received by the application at
block 810. The keepalive detector, at decision block 810,
determines if the data sent and/or received have a regular
interval and regular byte size pattern. In some embodiments,
the determination can include comparing the interval and byte
size pattern to the stored keepalive parameters determined for
the application to determine if there is a match or if the values
are similar (e.g., within a threshold such as +/-5%). In other
embodiments, the keepalive detector can collect enough data
to perform the statistical analysis associated with determining
that the pattern of data has a regular interval and regular byte
sizes. If the data sent and/or received have a regular interval
and regular byte sizes, the keepalive detector determines the
data sent and/or received occurred over the same TCP session
and were proxy streamed at decision block 815. If true, the
keepalive detector detects the data sent and/or received as
keepalive traffic at block 820. Conversely, at decision block
810, if no regular interval and/or regular byte sizes was
detected or the data was not sent or received over the same
TCP session or the data was not proxy streamed, the keepalive
detector does not detect any keepalive traffic at block 825.

FIG. 9 depicts a logic flow diagram illustrating an example
method of using timing characteristics and an amount of data

US 9,271,325 B2

41

sent and received to identify whether a connection or TCP
stream contains a keepalive and reporting the detection of the
keepalive. In the example method 900, the keepalive detector
(e.g., connection analyzer) monitors TDR messages at block
905. The keepalive detector detects a TDR message including
a connection ID at block 910. The keepalive detector then
searches for a connection object in a connections map that has
a matching connection ID at block 915. If a matching con-
nection object is not found at decision block 920, the kee-
palive detector creates a new connection object with informa-
tion from the TDR message and initializes a keepalive weight
associated with the object to 1 at block 925. The keepalive
detector then inserts the connection object to the connections
map using the connection ID at block 930.

Conversely, if a matching connection object is found at
decision block 920, the keepalive detector determines if the
amount of data sent and/or received is less than a threshold at
decision block 935. If true, the keepalive detector determines
if the time since the last data transfer is greater than a thresh-
old at decision block 940. If true, the keepalive detector
updates the connection object by incrementing the keepalive
weight of the connection object by 1 at block 945. The kee-
palive detector then determines if the keepalive weight is
greater than a threshold (e.g., 3) at decision block 950. Iftrue,
the keepalive detector confirms detection of a keepalive at
block 955. The keepalive detector then updates the connec-
tion object by updating a flag to indicate a keepalive detected
status. The keepalive detector then reports changes to the
connection object including the keepalive detected status and
the keepalive weight to a proxy server 125 or a host server
(e.g., host server 100). In the case in which the keepalive
weight is less than the threshold at decision block 950, the
keepalive detector cannot confirm that the TDR message
includes akeepalive, but the keepalive detector can still report
changes in the connection object to the proxy server or the
host server.

FIG. 10 depicts a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to per-
form any one or more of the methodologies discussed herein,
may be executed.

In the example of FIG. 10, the computer system 1000
includes a processor, memory, non-volatile memory, and an
interface device. Various common components (e.g., cache
memory) are omitted for illustrative simplicity. The computer
system 1000 is intended to illustrate a hardware device on
which any of the components depicted in the example of
FIGS. 2A-2C, FIG. 3 and FIGS. 4A-4C (and any other com-
ponents described in this specification) can be implemented.
The computer system 1000 can be of any applicable known or
convenient type. The components of the computer system
1000 can be coupled together via a bus or through some other
known or convenient device.

The processor may be, for example, a conventional micro-
processor such as an Intel Pentium microprocessor or
Motorola power PC microprocessor. One of skill in the rel-
evant art will recognize that the terms “machine-readable
(storage) medium” or “computer-readable (storage)
medium” include any type of device that is accessible by the
processor.

The memory is coupled to the processor by, for example, a
bus. The memory can include, by way of example but not
limitation, random access memory (RAM), such as dynamic
RAM (DRAM) and static RAM (SRAM). The memory can
be local, remote, or distributed.

The bus also couples the processor to the non-volatile
memory and drive unit. The non-volatile memory is often a

10

15

20

25

30

35

40

45

50

55

60

65

42

magnetic floppy or hard disk, a magnetic-optical disk, an
optical disk, a read-only memory (ROM), such as a CD-
ROM, EPROM, or EEPROM, a magnetic or optical card, or
another form of storage for large amounts of data. Some of
this data is often written, by a direct memory access process,
into memory during execution of software in the computer
1000. The non-volatile storage can be local, remote, or dis-
tributed. The non-volatile memory is optional because sys-
tems can be created with all applicable data available in
memory. A typical computer system will usually include at
least a processor, memory, and a device (e.g., a bus) coupling
the memory to the processor.

Software is typically stored in the non-volatile memory
and/or the drive unit. Indeed, for large programs, it may not
even be possible to store the entire program in the memory.
Nevertheless, it should be understood that for software to run,
if necessary, it is moved to a computer readable location
appropriate for processing, and for illustrative purposes, that
location is referred to as the memory in this paper. Even when
software is moved to the memory for execution, the processor
will typically make use of hardware registers to store values
associated with the software, and local cache that, ideally,
serves to speed up execution. As used herein, a software
program is assumed to be stored at any known or convenient
location (from non-volatile storage to hardware registers)
when the software program is referred to as “implemented in
a computer-readable medium.” A processor is considered to
be “configured to execute a program” when at least one value
associated with the program is stored in a register readable by
the processor.

The bus also couples the processor to the network interface
device. The interface can include one or more of a modem or
network interface. It will be appreciated that a modem or
network interface can be considered to be part of the com-
puter system. The interface can include an analog modem,
ISDN modem, cable modem, token ring interface, satellite
transmission interface (e.g. “direct PC”), or other interfaces
for coupling a computer system to other computer systems.
The interface can include one or more input and/or output
devices. The I/O devices can include, by way of example but
not limitation, a keyboard, a mouse or other pointing device,
disk drives, printers, a scanner, and other input and/or output
devices, including a display device. The display device can
include, by way of example but not limitation, a cathode ray
tube (CRT), liquid crystal display (LCD), or some other
applicable known or convenient display device. For simplic-
ity, it is assumed that controllers of any devices not depicted
in the example of FIG. 12 reside in the interface.

In operation, the computer system 1000 can be controlled
by operating system software that includes a file management
system, such as a disk operating system. One example of
operating system software with associated file management
system software is the family of operating systems known as
Windows® from Microsoft Corporation of Redmond, Wash.,
and their associated file management systems. Another
example of operating system software with its associated file
management system software is the Linux operating system
and its associated file management system. The file manage-
ment system is typically stored in the non-volatile memory
and/or drive unit and causes the processor to execute the
various acts required by the operating system to input and
output data and to store data in the memory, including storing
files on the non-volatile memory and/or drive unit.

Some portions of the detailed description may be presented
in terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by

US 9,271,325 B2

43

those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-
consistent sequence of operations leading to a desired result.
The operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the methods of some embodiments. The required struc-
ture for a variety of these systems will appear from the
description below. In addition, the techniques are not
described with reference to any particular programming lan-
guage, and various embodiments may thus be implemented
using a variety of programming languages.

In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g., networked) to
other machines. In a networked deployment, the machine
may operate in the capacity of a server or a client machine in
a client-server network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment.

The machine may be a server computer, a client computer,
a personal computer (PC), a tablet PC, a laptop computer, a
set-top box (STB), a personal digital assistant (PDA), a cel-
Iular telephone, an iPhone, a Blackberry, a processor, a tele-
phone, a web appliance, a network router, switch or bridge, or
any machine capable of executing a set of instructions (se-
quential or otherwise) that specify actions to be taken by that
machine.

While the machine-readable medium or machine-readable
storage medium is shown in an exemplary embodiment to be
a single medium, the term “machine-readable medium” and
“machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” and “machine-readable storage
medium” shall also be taken to include any medium that is
capable of storing, encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the pres-
ently disclosed technique and innovation.

In general, the routines executed to implement the embodi-
ments of the disclosure, may be implemented as part of an

10

15

20

25

30

35

40

45

50

55

60

65

44

operating system or a specific application, component, pro-
gram, object, module or sequence of instructions referred to
as “computer programs.” The computer programs typically
comprise one or more instructions set at various times in
various memory and storage devices in a computer, and that,
when read and executed by one or more processing units or
processors in a computer, cause the computer to perform
operations to execute elements involving the various aspects
of the disclosure.

Moreover, while embodiments have been described in the
context of fully functioning computers and computer sys-
tems, those skilled in the art will appreciate that the various
embodiments are capable of being distributed as a program
product in a variety of forms, and that the disclosure applies
equally regardless of the particular type of machine or com-
puter-readable media used to actually effect the distribution.

Further examples of machine-readable storage media,
machine-readable media, or computer-readable (storage)
media include but are not limited to recordable type media
such as volatile and non-volatile memory devices, floppy and
other removable disks, hard disk drives, optical disks (e.g.,
Compact Disk Read-Only Memory (CD ROMS), Digital Ver-
satile Disks, (DVDs), etc.), among others, and transmission
type media such as digital and analog communication links.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive sense,
as opposed to an exclusive or exhaustive sense; that is to say,
in the sense of “including, but not limited to.” As used herein,
the terms “connected,” “coupled,” or any variant thereof,
means any connection or coupling, either direct or indirect,
between two or more elements; the coupling of connection
between the elements can be physical, logical, or a combina-
tion thereof. Additionally, the words “herein,” “above,”
“below,” and words of similar import, when used in this
application, shall refer to this application as a whole and not
to any particular portions of this application. Where the con-
text permits, words in the above Detailed Description using
the singular or plural number may also include the plural or
singular number respectively. The word “or” in reference to a
list of two or more items, covers all of the following interpre-
tations of the word: any of'the items in the list, all of the items
in the list, and any combination of the items in the list.

The above detailed description of embodiments of the dis-
closure is not intended to be exhaustive or to limit the teach-
ings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosure,
as those skilled in the relevant art will recognize. For
example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines having
steps, or employ systems having blocks, in a different order,
and some processes or blocks may be deleted, moved, added,
subdivided, combined, and/or modified to provide alternative
or subcombinations. Each of these processes or blocks may
be implemented in a variety of different ways. Also, while
processes or blocks are at times shown as being performed in
series, these processes or blocks may instead be performed in
parallel, or may be performed at different times. Further any
specific numbers noted herein are only examples: alternative
implementations may employ differing values or ranges.

The teachings of the disclosure provided herein can be
applied to other systems, not necessarily the system described
above. The elements and acts of the various embodiments
described above can be combined to provide further embodi-
ments.

US 9,271,325 B2

45

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference. Aspects of
the disclosure can be modified, if necessary, to employ the
systems, functions, and concepts of the various references
described above to provide yet further embodiments of the
disclosure.

These and other changes can be made to the disclosure in
light of the above Detailed Description. While the above
description describes certain embodiments of the disclosure,
and describes the best mode contemplated, no matter how
detailed the above appears in text, the teachings can be prac-
ticed in many ways. Details of the system may vary consid-
erably in its implementation details, while still being encom-
passed by the subject matter disclosed herein. As noted above,
particular terminology used when describing certain features
or aspects of the disclosure should not be taken to imply that
the terminology is being redefined herein to be restricted to
any specific characteristics, features, or aspects of the disclo-
sure with which that terminology is associated. In general, the
teens used in the following claims should not be construed to
limit the disclosure to the specific embodiments disclosed in
the specification, unless the above Detailed Description sec-
tion explicitly defines such terms. Accordingly, the actual
scope of the disclosure encompasses not only the disclosed
embodiments, but also all equivalent ways of practicing or
implementing the disclosure under the claims.

While certain aspects of the disclosure are presented below
in certain claim forms, the inventors contemplate the various
aspects of the disclosure in any number of claim forms. For
example, while only one aspect of the disclosure is recited as
a means-plus-function claim under 35 U.S.C. §112, 96, other
aspects may likewise be embodied as a means-plus-function
claim, or in other forms, such as being embodied in a com-
puter-readable medium. (Any claims intended to be treated
under 35 U.S.C. §112, 6 will begin with the words “means
for”.) Accordingly, the applicant reserves the right to add
additional claims after filing the application to pursue such
additional claim forms for other aspects of the disclosure.

What is claimed is:
1. A method of identifying network transactions from a
Transport Control Protocol (TCP) stream, comprising:
using at least a processor and memory for:
examining, using statistical analysis, patterns of data
sent from and received by a mobile application on a
mobile device;
determining one or more network transaction param-
eters based on the examination;
identifying network transactions from the TCP stream
based on the one or more network transaction param-
eters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, wherein
the one or more network transaction parameters
include a regular interval and a regular size, both
determined from the patterns of data sent from and
received by the mobile application based on the sta-
tistical analysis.
2. A method of identifying network transactions from a
Transport Control Protocol (TCP) stream, comprising:
using at least a processor and memory for:

10

15

20

25

30

35

40

45

50

55

60

65

46

examining, using statistical analysis, patterns of data
sent from and received by a mobile application on a
mobile device;
determining one or more network transaction param-
eters based on the examination;
identifying network transactions from the TCP stream
based on the one or more network transaction param-
eters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, wherein
examining, using statistical analysis, patterns of data,
further comprises:
determining a number of times a pattern occurs during a
time interval,
performing a comparison of the number of times the
pattern occurs to a threshold; and
based on the comparison, determining whether the pat-
tern has been detected as regular.
3. A method of identifying network transactions from a
Transport Control Protocol (TCP) stream, comprising:
using at least a processor and memory for:
examining, using statistical analysis, patterns of data
sent from and received by a mobile application on a
mobile device;
determining one or more network transaction param-
eters based on the examination;
identifying network transactions from the TCP stream
based on the one or more network transaction param-
eters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, wherein
examining, using statistical analysis, patterns of data,
further comprises:
determining intervals between occurrences of a pattern;
determining a variance of the intervals;
performing a comparison of the variance to a threshold;
and
based on the comparison, determining whether the pat-
tern has been detected as regular.
4. A method of identifying network transactions from a
Transport Control Protocol (TCP) stream, comprising:
using at least a processor and memory for:
examining, using statistical analysis, patterns of data
sent from and received by a mobile application on a
mobile device;
determining one or more network transaction param-
eters based on the examination;
identifying network transactions from the TCP stream
based on the one or more network transaction param-
eters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, wherein
examining, using statistical analysis, patterns of data,
further comprises:
determining intervals between occurrences of a pattern;

US 9,271,325 B2

47

determining a median of the intervals;

performing a comparison of the median to a threshold;
and

based on the comparison, determining whether the pat-
tern has been detected as regular.

5. A method of identifying network transactions from a
Transport Control Protocol (TCP) stream, comprising:

using at least a processor and memory for:

examining, using statistical analysis, patterns of data
sent from and received by a mobile application on a
mobile device;
determining one or more network transaction param-
eters based on the examination;
identifying network transactions from the TCP stream
based on the one or more network transaction param-
eters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction param-
eters include content following a certain pattern,
wherein examining, using statistical analysis, pat-
terns of data, further comprises:
determining a number of times a pattern occurs sequen-
tially;
performing a comparison of the number of times the
pattern occurs sequentially to a threshold; and
based on the comparison, determining whether the pat-
tern has been detected as regular.

6. A method of identifying network transactions from a
Transport Control Protocol (TCP) stream, comprising:

using at least a processor and memory for:

examining, using statistical analysis, patterns of data
sent from and received by a mobile application on a
mobile device;

determining one or more network transaction param-
eters based on the examination;

identifying network transactions from the TCP stream
based on the one or more network transaction param-
eters; and

optimizing in real-time data sent over a mobile network
based on the identified network transactions,

wherein the network transactions occur over a same TCP
session, and

wherein the one or more network transaction parameters
include content following a certain pattern, wherein
optimizing in real-time the data sent further com-
prises:

minimizing a frequency of keepalive messages.

7. The method of claim 6 wherein the one or more network
transaction parameters include similar or repeating content
within the patterns of data sent from and received by the
mobile application.

8. The method of claim 6 wherein the patterns of data sent
from and received by the mobile application are recorded in a
network communication log along with patterns of data sent
from and received by other mobile applications on the mobile
device.

9. The method of claim 6 wherein examining patterns of
data further comprises:

storing the one or more network transaction parameters.

10. The method of claim 6 wherein examining, using sta-
tistical analysis, patterns of data, further comprises:

determining intervals between occurrences of a pattern;

determining a first quartile and a third quartile based on the
determined intervals;

20

25

30

35

40

45

50

55

60

65

48

determining a difference between the first quartile and the
third quartile;
determining a variance based on the difference and a
median interval;
performing a comparison of the variance to a threshold;
and
based on the comparison, determining whether the pattern
has been detected as regular.
11. The method of claim 6 wherein the identified network
transactions are keepalive messages.
12. A device comprising:
a communication interface operable to communicatively
couple the device to a network; and
a processor and a memory storing program codes, coupled
to the communication interface, operable to:
examine, using statistical analysis, patterns of data sent
from and received by a mobile application on a mobile
device;
determine one or more network transaction parameters
based on the examination;
identify network transactions from a TCP stream based
on the one or more network transaction parameters;
and
optimize in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, where in
order to examine, using statistical analysis, patterns of
data, the device is further operable to:
determine a number of times a pattern occurs during a
time interval,
perform a comparison of the number of times the pattern
occurs to a threshold; and
based on the comparison, determine whether the pattern
has been detected as regular.
13. A device comprising:
a communication interface operable to communicatively
couple the device to a network; and
a processor and a memory storing program codes, coupled
to the communication interface, operable to:
examine, using statistical analysis, patterns of data sent
from and received by a mobile application on a mobile
device;
determine one or more network transaction parameters
based on the examination;
identify network transactions from a TCP stream based
on the one or more network transaction parameters;
and
optimize in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, where in
order to examine, using statistical analysis, patterns of
data, the device is further operable to:
determine intervals between occurrences of a pattern;
determine a variance of the intervals;
perform a comparison of the variance to a threshold; and
based on the comparison, determine whether the pattern
has been detected as regular.
14. A device comprising:
a communication interface operable to communicatively
couple the device to a network; and

US 9,271,325 B2

49

aprocessor and a memory storing program codes, coupled
to the communication interface, operable to:
examine, using statistical analysis, patterns of data sent
from and received by a mobile application onamobile
device;
determine one or more network transaction parameters
based on the examination;
identify network transactions from a TCP stream based
on the one or more network transaction parameters;
and
optimize in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, where in
order to examine, using statistical analysis, patterns of
data, the device is further operable to:
determine intervals between occurrences of a pattern;
determine a median of the intervals;
perform a comparison of the median to a threshold;
and
based on the comparison, determine whether the pat-
tern has been detected as regular.
15. A device comprising:
a communication interface operable to communicatively
couple the device to a network; and
aprocessor and a memory storing program codes, coupled
to the communication interface, operable to:
examine, using statistical analysis, patterns of data sent
from and received by a mobile application onamobile
device;
determine one or more network transaction parameters
based on the examination;
identify network transactions from a TCP stream based
on the one or more network transaction parameters;
and
optimize in real-time data sent over a mobile network
based on the identified network transactions,
wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, where in
order to examine, using statistical analysis, patterns of
data, the device is further operable to:
determine a number of times a pattern occurs sequen-
tially;
perform a comparison of the number of times the pattern
occurs sequentially to a threshold; and
based on the comparison, determine whether the pattern
has been detected as regular.
16. A device comprising:
a communication interface operable to communicatively
couple the device to a network; and
aprocessor and a memory storing program codes, coupled
to the communication interface, operable to:
examine, using statistical analysis, patterns of data sent
from and received by a mobile application onamobile
device;
determine one or more network transaction parameters
based on the examination;
identify network transactions from a TCP stream based
on the one or more network transaction parameters;
and
optimize in real-time data sent over a mobile network
based on the identified network transactions,

50

wherein the network transactions occur over a same TCP
session, and
wherein the one or more network transaction parameters
include content following a certain pattern, where in
order to optimize in real-time the data sent the device
is further operable to:
minimize a frequency of keepalive messages.
17. The device of claim 16 where in order to examine, using
statistical analysis, patterns of data, the device is further oper-

% able to:

15

20

25

30

35

40

45

50

60

65

determine intervals between occurrences of a pattern;

determine a first quartile and a third quartile based on the

determined intervals;

determine a difference between the first quartile and the

third quartile;

determine a variance based on the difference and a median

interval;

perform a comparison of the variance to a threshold; and

based on the comparison, determine whether the pattern

has been detected as regular.

18. The device of claim 16 wherein the identified network
transactions are keepalive messages.

19. A non-transitory computer-readable storage medium
containing program instructions to cause a processor to per-
form a method comprising:

examining, using statistical analysis, patterns of data sent

from and received by a mobile application on a mobile
device;

determining one or more network transaction parameters

based on the examination;

identifying network transactions from a TCP stream based

on the one or more network transaction parameters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,

wherein the network transactions occur over a same TCP

session, and

wherein the one or more network transaction parameters

include content following a certain pattern, wherein
examining, using statistical analysis, patterns of data,
further comprises:

determining a number of times a pattern occurs during a

time interval,

performing a comparison of the number of times the pat-

tern occurs to a threshold; and

based on the comparison, determining whether the pattern

has been detected as regular.

20. A non-transitory computer-readable storage medium
containing program instructions to cause a processor to per-
form a method comprising:

examining, using statistical analysis, patterns of data sent

from and received by a mobile application on a mobile
device;

determining one or more network transaction parameters

based on the examination;

identifying network transactions from a TCP stream based

on the one or more network transaction parameters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,

wherein the network transactions occur over a same TCP

session, and

wherein the one or more network transaction parameters

include content following a certain pattern, wherein
examining, using statistical analysis, patterns of data,
further comprises:

determining intervals between occurrences of a pattern;

determining a variance of the intervals;

US 9,271,325 B2

51

performing a comparison of the variance to a threshold;

and

based on the comparison, determining whether the pattern

has been detected as regular.

21. A non-transitory computer-readable storage medium
containing program instructions to cause a processor to per-
form a method comprising:

examining, using statistical analysis, patterns of data sent

from and received by a mobile application on a mobile
device;

determining one or more network transaction parameters

based on the examination;

identifying network transactions from a TCP stream based

on the one or more network transaction parameters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,

wherein the network transactions occur over a same TCP

session, and

wherein the one or more network transaction parameters

include content following a certain pattern, wherein
examining, using statistical analysis, patterns of data,
further comprises:

determining intervals between occurrences of a pattern;

determining a median of the intervals;

performing a comparison of the median to a threshold; and

based on the comparison, determining whether the pattern

has been detected as regular.

22. A non-transitory computer-readable storage medium
containing program instructions to cause a processor to per-
form a method comprising:

examining, using statistical analysis, patterns of data sent

from and received by a mobile application on a mobile
device;

determining one or more network transaction parameters

based on the examination;

identifying network transactions from a TCP stream based

on the one or more network transaction parameters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,

wherein the network transactions occur over a same TCP

session, and

wherein the one or more network transaction parameters

include content following a certain pattern, wherein
examining, using statistical analysis, patterns of data,
further comprises:

5

15

20

25

30

35

40

52

determining a number of times a pattern occurs sequen-

tially;

performing a comparison of the number of times the pat-

tern occurs sequentially to a threshold; and

based on the comparison, determining whether the pattern

has been detected as regular.

23. A non-transitory computer-readable storage medium
containing program instructions to cause a processor to per-
form a method comprising:

examining, using statistical analysis, patterns of data sent

from and received by a mobile application on a mobile
device;

determining one or more network transaction parameters

based on the examination;

identifying network transactions from a TCP stream based

on the one or more network transaction parameters; and
optimizing in real-time data sent over a mobile network
based on the identified network transactions,

wherein the network transactions occur over a same TCP

session, and

wherein the one or more network transaction parameters

include content following a certain pattern, wherein
optimizing in real-time the data sent further comprises:
minimizing a frequency of keepalive messages.

24. The non-transitory computer-readable storage medium
of claim 23 wherein examining, using statistical analysis,
patterns of data, further comprises:

determining intervals between occurrences of a pattern;

determining a first quartile and a third quartile based on the

determined intervals;

determining a difference between the first quartile and the

third quartile;

determining a variance based on the difference and a

median interval;

performing a comparison of the variance to a threshold;

and

based on the comparison, determining whether the pattern

has been detected as regular.

25. The non-transitory computer-readable storage medium
of claim 23 wherein the identified network transactions are
keepalive messages.

